DEPTH STUDY ON THE AFSAM 109

This paper reports on the search for depths in a simulat.cof one gear's traffic using AFSAM 109. Because the rule of motinn restricts the independent motion of wheels 1,5 and 6 , the 36 distinet orientations of these wheels, in accordance with the value of $\left(W_{5}+W_{6}-W_{1}\right) \bmod 36$, distribute the cycle structure into 36 mutunily distinct classes. In addition the relative starting orientation of the first two wheels comilts the structure to one of three mutually distinct classes associated with three cycles of the first two cycle guarantee wheels. Hence all traffic tested was restricted to lie in the same one of the 108 distinct classes. It was agreed that 50 messages in this one class would represent a generous upper bound on the maximum use of the most popular of the classes used on any one day. All of the messages were assumed to be of length 5000. The ASAF 30 compared each of the 50 messages with each of the others for depth (flush and track-in depth). The results of this traffic search appears in Appendix A.

No suitable method was devised to generate quasi-random starts which would satisfy conditions typical for 5 letter indicator systems (such as A BCDEABC or A A B BCCDE); therefore no attempt was made to have all message starts limited in this fashion. For the depth study the indicator system was assumed to be made up of eight random Zetters.

SEGRET

Nine notch patterns were constructed (see Appendix B). These each had 10 blocks (a stretch of notches followed by a stretch of no notches) and were calculated to be of 26 per cent eaturation level in respect to propensity for producing branch points. (See "Preliminary Report on AFSAM 9 Depth Study", Robert P. Murphy).

Uaing these nine patterns 365 sets of eight were randomly selected and arranged and each set designated as the notch ring arrangement for the rotors taken in the fixed order of motion control and used in simulating the 50 messages involved in the depth search. (See list Appendix C, omitted in all but file copy). In order to deorease the number of changes from one day's arrangement to the next the 11st was sorted on the notch rings of the first wheels. This effectively recorded adjacent to one another the days with similariy placed notch rings. This order is listed in Appendix D, omitted in all but the file copy. Typical of the rest of the list is the following section.

DAY NUMBER	NOTCH RTNG ARPANGEMENT	
334	1247	8395
305	1248	5796
222	1276	9583
182	1276	3568
243	1293	4876
278	1389	2765
228	1304	5682
117	1437	8265
191	1439	6857

To aid in randomess of the genaration of the staring point of the 50 messages the notch rings on the iive wheels $W_{2}, W_{3}, W_{5}, W_{6}$ and W7 which control the big cycle of the quasi-random generation were changed by the same method but on a less frequent basis. Appendix E shows the notch patterns and assignment to selector lines of designated wheels for this quasi-random generation.

The mothod used in the quasi-random setting generation is described in general in Appendix F and in detail in the above reference.
lst Lt. William H. Cornelius, Jr. NSA-314
20 June 1955

APPENDIX.A

LIST OF DEPTHS FOUND BETWEEN MESSAGES OF LENGTH 5000

Simulated Date

Messages in Depth

	Message Number	In Depth	Message Number
9 Jan	42	with	43
14 Feb	15	with	43
25 Fab	32	with	43
31 Mar	35	with	42
9 May	6	with	8
14 Jun	15	with	30
21 Jun	7	with	8
9 Aug	2	with	49
7 0ct	14	with	46
	20	with	23 *
11 Oct	38	with	48

LIST OF DEPTHS FOUND BETWEEN MESSAGES OF LENGTH 10,000, BUT NOT IN DEPTH DURING FIRST HALF OF ONE MESSAGE

Simulated Date	Message Number	In Depth	Message Number
3 Jan	31	with	48
6 Feb	19	with	31
7 Apr	21	with	23
18 May	10	with	50
6 Jun	5	with	35
8 Jun	26	with	33
23 Jul	4	with	18
23 Nov	30	with	50

*Note two depths of 2 were found in 7 Oct traffic

NOTCH RINGS AVAILABLE FOR AFSAM 109 MOTION CONTROL

3

APPENDIX C $\}$ Included in
APPRNDIX D\} file copy only

$$
\begin{aligned}
& \text { APPENDIX E } \\
& \text { SELECTOR IINE FATTERNS FOR "CUASI-RANDOM" MOTICN CCNTRCL } \\
& 012345678910111213141516171819202122232425262728293031
\end{aligned}
$$

APPENDIX E COMTIRNUED

W_{2}	w_{3}	W_{5}	W_{6}	${ }_{7}$	
5	3	2	1	6	- Setting for 32 days
4	2	6	1	3	- Setting for 3t days
6	1	3	4	5 Stetting for 3l dins
2	4	6	3	1	- . . . Setting for 37 days
1	2	6	3	4	-. Sotting for 30 days
3	1	2	5,	6	- Setting for 37 days
4	2	3	1	5	- . Setting fors 23 days
6	4	2	3	1	. . . Setiting for 32 days
1	4	3	6	5	- . Setting fier 64.4
5	2	3	4	2 Setting forr 52 diny

FUNGITOMAL DIAGRAM OF RANDOMIZER

The figure shows three cycles of the AFSAM 109. The solid lines and dotted segments show some of the branches and lead-in structure under the standard rule of motion. The dashed lines show graphically the stepping under the quasi-random motion rule from one AFSAM 109 message setting to another. An initial start is selected by a card which satisfies the condition that the setting be in the class of setting under axamination. This setting is taken as the indicator ' of the first AFSAM 109 message see dotted line segment marked 1.

The 5000th setting of the message recorded in the memory and the quasicrandom atepping rule operates for 10,000 steps to produce the initial point of the second AFSAM 109 message see digit 2. The

3isafiry

A. PFENDIX F CONTINUED
connecting dashed lines simbolizes the quasi-random stepping and the fact that during this rule the wheels do not obey the rules of the AFSAM 109 motion. There are shown in the Figure the first five messages generated under this compler rule. Note that message 2 and message 5 are in depth as is exhibitedin the merging (see asterisk) of the segments marked 2 and 5.

