MILITARY CRYPTANALYSIS

by

WILLIAM F. FRIEDMAN
Principal Cryptanalyst

Prepared under the direction of the Chief Signal Officer.

lord token from
WAr's home
1937

MILITARY CEYPTANȦLYSIS. PART II
Simpler Varieties of Polyalphabetic Substitution Systems

Section Paragraphs Page
I. Introductory Remarks 1-4 1
II. Cipher Alphakets for polyalphabetic substitution. 5-7 5
III. Theory of solution of repeating-key systems 8-12 7
IV. Repeating-key systems with standard cipher alphabets $13-15$ 16
V. Fepeating-key systems with mixed cipher alphabets, 16-26 24
VI. Repeating-key systems with mixed cipher alphabets, II 27-30 55
VII. Theory of indirect symmetry of position in secondary alphabets. 31 58
VIII. Application of principles of indirect symmetry of position. 32-36 66
IX. Repeating-key systems with mixed cipher alphabets, III 37-40 87
X. Repeating-key systems with mixed cipher alphabets, IV $41-46$ -94of DOD Directive 5200.1 dated 8 July 1957,and by authority of the Director, MatiomalSecurity Agency.
Poul VWlele
Paul s. Willard
Colonel, acc
Adjutant General

SECTION I

' Paragraph

The essential difference between monoalphabetic and polyalphabotic substitution., 1
Primary classification of polyalpnabotic systems. 2
Primary classiffication of periodic syatems. 3
Sequence of study of polyalphabetic systems 4

1. The essential difference between monoalphabatic and polyalphabetic substitution. - a. In the substitution mathods thus far discussed it has been pointed out that thier basic feature is that of monoal phabeticity. From the cryptanalytic standpoint, neither the nature of the cipher symbols, nor their method of production is an essential feature, although these may be differentiating characteristics from the cryptographic atandpoint. It is true that in those cases desiguated as, monoalphabetic substitution with variants or multiple equivalents, there is a departure, more or less considerable, from strict monoal phabeticity. In some of those ceses, indeed, there may be available two or more wholly indepondon't ests of equivalonte, which, moreovar, may oven be arrangod in the form of completoly soparato alphabsts. Thus, whilo a loose torminology might pormit ono to dosignate such aystome as polyalphabotic, it is battor to roserve this nomonclature for thoso casos whoroin polyalphaboticity is tho essonco of tho mothod, spocifically introducod with tho purpose of imparting a positional variation in tho substitutivo oquivalonts for plain-toxt lottors, in accordanco with somo rulo diroctly or indiroctly connoctod with the absoluto pogitions tho plain-toxt lottors occupy in tho mossago. This point calls for amplification.
b. In monoalphabotic aubstitution with variants tho objoct of having difforont or multiplo oquivalonts is to suppross, so far as possiblo by simplo mothods, tho charactoristic froquoncios of tho lottors occurring in plain toxt. As has boon notod, it is by muans of thoso charactoristic froquoncios that tho ciphor oquivalonts can usually bo idontifiod. In . thoso systams tho varying oquivalonts for plain-toxt lottors aro subjoct to tho froo choico and caprico of tho onciphoring clork; if ho is caroful and consciontious in tho work, ho will roally mako uso of all tho difforont oquivalunts affordod by tho systom; but if ho is slip-shod nnd hurriod in his שork, ho will ueo tho samo oquivalonts ropoatodly rathor than tako pains and timo to rofor to tho charts, tablos, or diagrams to find tho variants. Moroovor, and this is a crucial point, ovon if tho individual onciphoring clorks aro oxtromoly caroful, whon many of thom omploy tho snmo systom it is ontiroly impossiblo to insuro a comploto divorsity in tho onciphormonts producod by two or moro clorks working e.t difforont mossago contors. Tho rosult is inovitably to produco plonty of ropotitions in tho toxts omannting from sovorcl stations, rnd whon toxts such as thoso aro all cevniliblo for study thoy aro opon to solution, by ne comparison of thoir similiritios nnd difforoncos.
c. In true polyalphabetic syatems, on the other hand, there is established a rather definite prodedure which automatically determines the shifts or changes in equivalents or in the manner in which they are introduced, so that these changes are beyond the momentary whim or choice of the enciphering clerk. Then the method of shifting or changing the equivalents is scientifically sound and suffieiently complex the research necessary to establish the values of the cipher characters is much more prolonged and difficult than is the case even in complicated monoalphabetic substitution with variants, as rill later be seen. These are the objects of true polyalphabetic substitution systers. The number of such systems is quite large, and it will be possible to describe in detail the cryptanalysis of only a fen of the more common or typical examples of methods onc ountered in practical military cryptanalysis.
d. The three methods, (1) mono-equivalent monoalphabetic aubstitution, (2) monoalphabetic substitution with variants, and (3) true polyalphabetic substitution show the folloving relationships as regards the equivalency between plain-text and cipher-text units:
A. In method (1), there is a set of 26 eymbols: a plaintext letter is alsays represented by one and only one of these symbols; conversely, a symbol alway represents the sane plaintext letter. The equivalence betreen the plain-text and the ;cipher letters is constant in both encipherment and decipherment.
-. - B. In method (2), there is a set of $26+\eta$ symbols, where n may be any number; a plain-text letter may be represented by 1 , 2, 3, ... different synbols; conversely, a symbol always represents the same plain-text letter, the same as is the case in method (1). The equivalence betreen the plain-text and the cipher
letters is variable in enciphernent but constant in decipherment. 1_{1}.
C. In method (3), there is, as in the first method a set of 26 symbols; a plain-text letter may be representad by 1,2 , 3, 26 different symbols; conversely, a symbol may repres.ent 1, 2, 3,:... 26: different plain text letters, depending upon the system and the specific key. The equivalence between the plain-text and the-cipher latters iq variable in both eneipher. ment and deciphermbat.. ..
2. Primary classification of polyalphabetic systems. - a. A primary classification of polyalphabptic systems into two rather distinct types may be made: (1) periodic aystema' and (2) aperiodic systemis. When the enciphering process involyes a cryptographic treatment which is repetitive in character, and which results in the production of cyclic phenomena in the cryptographic text, the syatem is terned pariodic. When the enciphering process is not of the type described in the foregoing general terms, the syatem is termed aperiodic. The substitution in both cases involves the use of two or more cipher alphabets.
b. The cyclic phenomena inherent in a periodic system may be exhibited externally, in phich case they are said to be patent, or they may not be oxhibited externally, and must be uncovered by a preliminary step in the analysia, in rhich case they are said to be latent. The

1 There is a monoalphabetic mothod in which the inverse result obtains, the correspondence being constant in onciphernent but variable in decipherment; this is a method not found in the usual books on cryptography but in an essay on that subject by Jigar Allan Poe, entitled, in some editions of his works, "A fow words on secret writing" and, in other editions, "Cryptography". The method is to draw up an enciphering alphabet such as the following (using Poe's example):

SUAVITGRINEODOFORTITS							

In such an alphabet, because of repetitions in the cipher component, the plain-text equivalents are subject to a considerable degree of variability, as will be seen in the deciphering alphabet:

This type of variability gives rise to ambiguities in decipherment. A cipher group such as TIL ${ }_{c}$ would yield such plain-text sequences as REG, FIG, THU, RIU, etc., which could be read only by context. No system of such a character mould be practical for serious usage.
periodicity may be quite definite in nature, and therefore determinable with mathematical exactitude allowing for no variability, in wich case the periodicity is said to be fixed. In other instances the periodicity is more or lese flexible in character and even though it may be determinable mathematically, allorrance muat be made for a degree of variability subject to limite controlled by the specific system under investigation. The periodicity is in this case said to be flaxible, or wariable zithin limits.
3. Primary claseification of periodic systems. - a. reriodic polyalphabetic substitution systems may primarily be clăssified into tro kinds.
(1) Those in thich only a few of a whole set of cipher salphabets, are used in enciphering individual messages, these alphabets being employed repeatedly in a fixed sequence throughout each message. Because it is usual to employ a-secret word, phrase, or number as a key to determine the number identity, and sequence with שhich the cipher alphabets are eaploysd, and this key is used over and over again in encipherment, this method is often called the repeating-alphabot eysten. It is also sometimes referred to as the multiole-alphabet system because if the keying of the entire message be considered as a whole it is composed of multiples of a short key used repetítively. In this text the designation "repeating-key eystem" will be used.
(2) Those in which all the cipher alphabets comprising the complete' s'at for the syatem are employed one after the other progressively in the encipherment of a message, and when the last alphabet of the series has been used, the encipherer besins over again with the first alphabet. This is comionly reforred to as a proxressiye-alphabet syatem because the cipher alphabets are used in progression.
4. Sequence of atudy of polyalphabetic systems. - a. In the studies to be followed in connection rith polyalpliabetic systems, the order 'in bhich the rork rill proceed conforms very closely to the classifications made in paragraphs 2 and 3. teriodic polyalphabetic substitution ciphers will come first, because they are, as a rule, the simpler and because a thorough understanding of the principles of thair analysis is prerequisite to a comprehension of how aperiodic systems are sclved. But in the final analysis the solution of examples of both types reste upon the conversion or raduction of polyalphabeticity into monoalphabeticity. If this is pessible, solution can alvays be achieved, granted there are sufficient data in

[^0]the final monoalphabetic distributions to permit of solution by recourse to the ordinary mrinciples of frequency.

b. Pirst in the ordor of atudy of pariodic gyatems will come the analysis of fepaating-key systerne, S.ome of the more simple varieties aill be discussed in detail, with examples. Subsequently, ciphers of the progressive type $\begin{aligned} & \text { ill } \\ & \text { be diacusised. There } 7 \text { gill then }\end{aligned}$ follow a more or less detailed treatment of aperiodic systems.,

SICTHON II :

Paragraph
Classification of cipher alphabets upon the basis' 'of
their derivation. 5
Yrimary components and secondary alphabets. 6
Cipher disks and cipher: squares 7
5. Classification of cipher alphabets upon the basis of their derivation. - a. Tha 日ubstitution processes in polyalphabetic methods involve the use of a' plúrality of cipher alphabets. The latter inay be derived by various achemes, the exact hature of which determines the principal characteristics of the cipher alphabets and plays a very important role in the preparation and solution of polyalphabetic cryptograms. For these reasons it is advisable, before proceeding to a discussion of the principles and mathods of analysis, to point out these various types of cipher alphabets, shoy hov they are produced, and how the method of their production or derivation way be made to yield important clues and short-cuts in analysis,
b. A primary clasìifićation of çipher 'al;habots for polyalphabetic substitution may be made into the two following types:
(1) Independent'or unrelated cipher alphabets.
(2) Derived or interrelated cipher alphabets.
c.* Independent cipher alphabets may be disposed of in a very few worde. They are merely separate and distinct alphabets showing no relationship to one another in any way. They may be compiled by the various methods discussed in Hars. 44-48; inclusive, Section IX of Special Text No. 165, Flementary \ddagger lilitary Cryptography. The solution of cryptozrams written by means of such alphabets is rendered more difficult by reason of the absence of any relationship between the equivalents of one cipher alphabet and those of any of the other alphabets of the sane cryptogran. On the other hand, from the point
of viev of practicability in their production and their handling in cryptographing end decryptographing, they present some difficulties 'hich make them less favored by cryptographers than cipher alphabets of the second type.
d. Derived or interrelated alphabets, as their name indicates; are most cormonly produced by the interaction of tro pil ary components, ${ }^{1}$ which when juxtaposed at the various points of coincidence can be made to yield secondary alphabots.
6. Yrinary components and secondary alphabets. - Two basic, slidable sequences or components of n characters each vill yield n secondary alphabets. The conponents may be classified according to various schemes. For cryptanalytic purposes the following classification will be found useful:

CASA. The primary components are both normal sequences.
(1) The sequences proceed in the same direction. (The secondary alphabets are direct standard alphabets.)
(2) The sequences proceed, in opposite directions. (The secondary alphabets are reversed standard alphabets and are reciprocal.)

CASi 3. The primary components are not both nornal sequences.
(1) The plain component is normal, the cipher component is a mixed sequence. (The secondary alphabets are mixed alphabets.)
(2) The plain component is a mixed sectuence, the cipher component is norwal. (Ths secondary alphabets are mixed alphabets.)
(3) Both components are zixed seçuences.
(a) Components are identical mixed sequences.
I. Sequences proceed in the same direction. (The secondary alphabets are mixed alphabets.) (car. 28)

II. Sequances roceed in opposite directions. (The seconuary alpnabets are reciprocal M1xed alrhabeus.) (tar. 33)

(b) Components are different inixed sequences. (The socondary al hebets are mixed alyhabets., (rar. 39)
7. Cipher disks and cipher squares. - a. Reference is now ade to tars. 60-62, Section XII, Special Text No. 165, wherein was shown the equivalancy that subsists between the rosults produced by sliding primary components and ciohar dishs and square tables of the Vapenere type. In all cases the results produced by the successive juxtapositions of two sliding couponente may be duplicated by using a cipher square; the converse relationship $1 s$ true only when the columns or rows of the cipher square shor symmetry; that is, the sequences in the columns or rors are identical but merely disolaced 1, 2, 3, ... intervals successively.
b. In cryptanalytic studies it is usually more convenient and useful, Wherever possible, to consider the problem frou the point of viev of sliding coraponents rather than cipher squares.

SECTION III

THEORY OF SOLUTION OF RTHEATING-KSY SYSTIMS

Paragraph

The three steps in the analysis of repeating-key systems. . 8
First step: finding the length of the period. 9
General remarks on factoring 10
Second step: distributing the cipher text into the
component monoalphabets 11
Third step: solving the monoal phabetic distributions. . . . 12
8. The three steps in the analyeis of repeating-key systems. a. The method of enciphering according to the principle of the re-peating-key, or repeating alphabets is adequately, explained in fars. 57 and 58 of Special Text No. 165, Elementary sililtary Crjptography, and no further reference need be made at this time. The analysis of a cryptogram of this type, ragardless of the kind of cipher alphabets omployed, or their mothod of production, resolves atsolf into throe distinct and successlve stops.
(1) Determination of tho length of tho ropeating key, which is the samo as the detormanation of the oxact number of alphabots involved in the cryptogram;
(2) Allocation or distribution of the latters of the cipher text into the respective cipher alphabets to which they belong, which reduces the polyalphabetic text to monoalphabetic teras;
(3) innalysis of the individual monoal phabetic distributions to deterrine plain-text values of the cipher letters in each distribution or alphabet.
b. The foregoing steps rill be treated in the order in which mentioned. The first step may be described briefly as that of detemining the period. The second ate, may be described briefly as that of reduction to monoalphabetic terns. The third step ray be designated as identification of cipher-text values.
9. First steps finding the length of the period. - e. The deteraination of the period, that is, ihe length of the fey or the number of cipher alphabete involved in a crypto.jran enciphered by the repeating-key method is, as a rule, a relatively aiuple matter. The cryptogram itself usually manifests externally certain phenomena which are the direct result 'of the use of a repeating 'hey. The . principles involved are, however, so fundamental in cryptanalysis that thair elucidation warrants a somowhat detailed treatment. This rill be done in connection vith a ahort example of encipherment, shorn belor in Fig. 1.
b. Regardless of what system is used, identical plain-text letters enciphered by the same cipher alphabet mast yield identical cipher letters. Zeferring to rig. 1 , such a condition is brought about every time that identical plain-text letters happen to be enciphered with the same key-letter, or every tive identical plain-text letters fall into the saine colum in the onciphernent. 2 Nor since the number of colums or positions with respect to the ley is very limited (except in the case of very long key vords), and eince the repetition of letters is an inevitable condition in plain text, it follows that there will be in a message of fair length many cases where identical plain-text letters mugt fall into the same column. They will thus be enciphered by the same eipher alphabet, resulting, therefore, in the production of many identical letters in the cipher text. Then identical plain-text polyzraphs fall into identical

[^1][^2]
REF - IqD.: A64561
 ITISSAGB

 ITS COMBAT TRaIN WIIf IT. (Key. "BLUS, using direct standard alphabete.)
cihher alhilamis.

$\frac{B L U E}{T H 2 A}, \frac{B L U E}{T H E A}$

LERY LERY Y

ALIO ALIO

CHI'N'. \quad CHIN

HERE $\mathrm{H}_{\mathrm{I}}^{\mathrm{I}} \mathrm{P} \mathrm{R} \mathrm{E} \mathrm{E}$

	A R O-F	A

THEA	

DVAN DVAN
CEGU $\quad \underset{D}{\mathrm{D}} \underset{\mathrm{P}}{\mathrm{A}} \mathrm{G}$

$\begin{array}{llll} A & R & D \\ B & C & K \\ X \end{array}$	

EZPS $\underset{\mathrm{F}}{\mathrm{F}} \underset{\mathrm{P}}{\mathrm{P}} \underset{\mathrm{J}}{\mathrm{P}} \mathrm{W}$
ITSC ITTSC

	OMBA

TRA	$\begin{gathered} T \\ \hline \end{gathered} \frac{T}{L}{ }_{L}^{A}$
I NW I	JYelii
THIT	IHIT

- 10 -

column the result is the formation of identical cipher-text polygraphs, that is, repetitions of groups of 2, 3, 4, ... letters are exhibited in the cryptogram. Repetitions of this type will hereafter be called causal repetitions, because they are produced by a definite, traceable cause: the encipherment of identical letters by the same cipher alphabets.
c. It will also happen, however, that different plain-text letters falling in different columns will by mere accident produce identical cipher letters. Note, for example, in. Fig. 1 that in Column 1, R_{p} becomes S_{c} and that in Column $2, \mathrm{H}_{\mathrm{p}}$ also becomes S_{c}. The production of an identical cipher letter in these two cases (that is, a repetition where the plain-text letters are different and enciphered by different alphabeta) is merely fortuitóus. 'It is, in every day language, "p mere coincidence", or "an accident". For this reason repetitions of this type irill hereafter be called'accidental repetitiong. Such repetitions will, of course, happen fairly frequently with individual letters, but less frequantly with digraphs, because in this case the same kind of an "ecicident" must take place twice in succession. Intuitively one feels that the chances that such a purely fortuitous coincidence rill happen tro times in succession must be much less than that it will happen every once in a while in the case of single letters. Similarly, intuition makes one feel that the chances of such accidents mappening in the case of thres or more consecutive letters are still leas, thain in the case of digraphs, decreasing very rapidly as the repetition increases in length. This phenolienon may, however, be dealt 'ififh'statisticaily, taking the matter outside the realn of intuition.
d. Suppose that all 26 letters of the alphab'et are placed in a hat and shaken up. ihat is the probability of drearing any specified single letter in a single drawing? Obviously $\frac{1}{25^{\circ}}$ Suppose that all 676 pairs of letters, each pair being written on a separate slip of paper are aimilarly placed in a hat, what is the probability of drawing any specified digraph in a single drawing ${ }^{1}$ Obviously $\frac{1}{676}$ or $\frac{1}{26}$ - Similarly, for trigraphs the probabilifity is $\frac{1}{17576}$ or $\frac{1}{26^{3}}$; for tetragraphs, $\frac{1}{456,976}$ or $\frac{1}{26^{4}}$; and in general, for any polygraph the probability is $\frac{1}{26^{n}}$ where \underline{n} is the lengtin of the polygraph. However, the student here is concerned not pith the theoretical results of a single drawing of a letter or'a polygraph but with the theoretical results of two or more successive dravinge. Returning to the case of the 26 letters in a hat, suppose a letter is drawn,

I Or, if aingle letters are used, what is the probability of drawing any specified pair of letters in two successive dreaings, the first letter drawn being replaced before draving the second?
recorded, and roplaced in the hat." h gecond drawing is now made. 'That is the probability that the letter dram the second time is, the same as the one drawn the first time? Again the probability is $\frac{1}{26}$, becayise the letter to be drawn on the first trial was not epecified. The phenomenon of interest here is not the identity of the letters that turned up in the two auccessive drawinge but merely whether or not the letters that turned up in the two successive drawings are identical; they may be 2 A 's, $2 \mathrm{~B}^{\prime} \mathrm{s}, 2 \mathrm{C} \mathrm{C}_{\mathrm{s}, \mathrm{and}}$ ano on. Coming now to the case of digraphs, the reasoning is the same. Sup-. nose a slip containing a digraph is drawn, recorded, and replaced. A second drawing is then made. That is the probability that the digraph dram the seoond time is the same as that drawn the first time? Again the probability is $\frac{1}{676}$, since the digraph to be drawn on the first trial was not specified and merely occurrence or nonoccurrence of rapetition is of interest. Thus, the reasoning may be carried on as before to cover repetitious polygraphs of n letters, and it may be set down that the probability for the occurrence of a capotition of n lotters is $\frac{1}{26 \underline{Z}^{\prime}}$.
e. Suppose that in a cryptogram containing exactly 80 letters thers occurs a repetition of a tetragraph. What is the probability that this is a purely accidental phenomenon? Let the matter be reas oned put as follows. In 80 letters there are 77 successive tetragraphe (assuming that the message as a whole cannot be considered as cyclic, so that the $78 \mathrm{th}, 79 \mathrm{th}$, 80 th and lat letters do not form another tetragraph). Of these 77 tetragraphs, only 73 are available for study after a given tetragraph has been specified initiaily as the basis for a repetition. For example, auppose the first tetragraph USYת is specified; a repetition of USY: is sought. Since, as explained above, in perfectly homogeneous random text the probability of occurrence of a repotition of tetragraph is $\frac{1}{456,976}$, and since there are in this case 73 totragraphs which may be examined to see whether or not any of thom coincides with the initially apecified tetragraph USYI, the probability that a sacond USYF will accur in this mossago puroly by accid ont is $\frac{73}{456,976}$, approximately $\frac{1}{6260}$ or roughly $\frac{1}{6300}$. In othor worde, such an accidental repetition may be expected to occur on the average only about once in 6300 cases. The odde against its being an accidental repetition are therefore sufficiently great to lead to the conclusion that it is notagecidental, but cansel; and the cause is in this case quite easy to ieëe. A polygraph repeated in the plain text was actually enciphered by identical alphabets. In order for this to occur, it was necessary that the polygraph fall both times in exactly the same relative position with respect to the key. Note, for example, that USYD in Fig. 1 represente in both cases the plain-text polygraph THEA. The first time it occurred it fell in positions l-2-3-4 with respect to the key; the second time it occurred it happened to fall in the very same relative positions, although it might just as well have happened to fall in any of

REF ID:A64561

the other throe possible relative positions with respect to the key, viz, 2-3-4-1, 3-4-1-2, or 4-1-2-3. In fact, the word "happened" correctly expresses the case, for the insertion or deletion of a single plain-text letter between the two occurrences would have throw the second occurrence one letter forward or backward, respectively, and thus caused the polygraph to be enciphered by a sequence of alphabets such as can no longer produce the cipher polygraph USYE from the plain-text polygraph THEA.
f. If a count is made of the number of letters from and including the farst USY 3 to, but not including, the second occurrence of USYE, a total of 40 letters is found to antervene between the two occurrences. This number: 40, must, of course, be an exact multiple of the length of the key. Having the plain-text before one, it is easily seen that it is the loth multiple; that is, the 4-letter key has repeated itself 10 times between the first and the second occurrence of USYE. It follows, therefore, that if the length of the liey vere not know, the number 40 could safely be taken to be an exact multiple of the length of the key; in other words, one of the factors of the number 40 would be equal to the length of the key. The word "safely" 1s used in the preceding sentence to mean that the interval 40 a,plies to a repetition of 4 letters and the chances that this repetition 18 accidental are extremely small (roughly 1 in 6300). The factors of 40 are $2,4,5,8,10$, and 20. So far as this single repetation USYE is concerned, if the length of the key were not known, all that could be said about the latter would be that it is equal to one of these factors. The repetition by itself gives no further indications. How can the exact factor be selected from among a list of several possible factors?
g. What all the repetitions in th 3 cryptogran be listed. They are aeq fốlows (note underscoring in the cryptograun):

1 On the other hand, the insertion or deletion of this one letter might bring the letters of some other polygraph into simar columns so that another repetition would be exhibited in case the USY: repetition had thus been suppressed.
lst USYE to 2d USYE 40 letters. Factors 2, 4, 5, 8, 10, 20.

h. Ars all these repetitions causal repetitions It has been seen that the odds against the USVE repetition being accidental are about 6300 to $1 ;$ the odds against the 2 -letter repetitions being accidental are only, about 9 to l_{0} Experience indicates that much mbre weight is to be attached to a single 4 -letter repetition than to a half dozen or sq 2 -latter repetitions; nevertheless, it will be noted that every one of the 2-letter repetition intervals except the last contains the factore 2 and 4, as does the intepval 40 for the 4 -letter repetitioh. This means that if the cipher is britten out in either 2 colurans or 4 columns, all these repetitions (except the last) would fall into the sarae columan. From this it followa that the length of the key is either 2 or 4, the latter, on practical grounde, being more probable than the former. Doubte concerning the matter of choosing betrieen a 2 -latter and a 4 -letter key will be dissolved. When the cipher text is distributed into its component nonoliteral frequency distributions.. .
i. The repeated, digraph CX in the foragoing message is an accidental repetition, as will bee apparent by referring to Figit 1. Had the message been longer there would have been more such accidental repetitions, but, on the other hand, there pould be a propqrtionately greater number of causal repetitions. This is because the phenomenon of repetition in plain text is so all-pervading.

1. Sometimes it happens that the cryptanalyat duickly notes a repatition of a polygraph of four or more letters, the interval between the first and second occurrences of which has only two factors, of which one is a relatively small number, the other a relatively high incomensurable number. He may therafore assume at once that the length of the key is equal to the smaller factor without searching for additional recurrences upon which to corroborate his assumption. Suppose, for example, that in a relatively short eryptogram the interval between the first and second occurrences of a polygraph of five letters happens to be a number such as 203, the factors of which are 7 and 29. Firidently the number of alphabets may at once be assumed to be 7, unless one is dealing vith messages in which the correspondents are known to use long keys. In the latter case one could assume the number of alphabets to be 29a
k. The foregoing method of deterauining the period in a polyalphabetic cipher is comonly referred to in the literature as "factoring". Because it is an apt term and is brief, it will be employed hereafter in this text to designate the process.
2. General remarks on faotoring. - ㄹ. The statement made in rar. 2 rith respect to the cyclic. phenomena said to be exhibited in cryptograms of the periodic type nor becomes clear. The use of a short repeating key produces a periodicity of recurrences or repotitions collectively terned "cyclic phenomena," an analysis of which leads to a determination of the length of the period or cycle, and this gives the length of the key. Only in the case of relatively short cryptograms enciphered by a relatively long key does factoring fail to lead to the correct determination of the number of cipher alphabets in a repeating-key cipher; and of course, the fact that a cryptogram contains ropetitions whose factors shom constancy is in itself an indication and test or its periodic nature. It also follows that if the cryptogran is not a repaating-icey cipher, then factoring 'ill show no definite results, and conversely the fact that it does not yield definite results at once indicates that the cryptozram is not a periodic, repeating-key cipher.
b. There are two cases in which factoring leads to no definite results. One is in the case of monoalphabetic substitution ciphers. Here recurrences are very plentiful as a rule, and the intervals separating these recurrances may be factored, but the factors $7 i l l$ shov no constancy there will be several factors common to many or most of the recurrences. This in itself is an indication of a monoalphabetic substitution cipher, if the very fact of the presence of many recurrences fails to impress itself upon the inexperienced cryptanalyst. The other case in which the process of factoring is nonsignificant involves certain types of nonperiodic, polyalphabetic ciphers. In certain of these ciphers recurrences of digraphs, trigraphs, and even polygraphs may be plentiful in a long message, but the intervals between such recurrences bear no definite multiple relation to the length of the key, such as in the case of the true periodic, repeating-key cipher, in which the al habets change with successive letters and repeat themeelves over and over again.
g. Factoring is not the only method of determining the length of the period of a periodic, polyalphabetic substitution cipher, although it is by far the most common and easily applied. st this point it rill merely be noted that when the message under study is relatively short in comparison with the length of the key, so that there are only a few cycles of cipher text and no lang repetitions. affording a basis for factoring, there are several other methods available. However, it being deemed inadvisable to interject the data concerning those other wethods at this point, they will se explainad aubsequently. It is desirable at this juncture merely to indicate that methods other than factoring do exist and are used in practical work.
3. Second step: distributing the cipher text into the component monoal phabets. - - a. After the number of cipher alphabets involved in the cryptogran has been ascertained, the next step is to rewrite the message in eroups corresponding to the length of the key, or in columar fashion, whichever is more convenient, and this automaticalis'divides up the text so that the letters belonging to the same cipher alphabet occupy similar positions in the groups, or, if the columnar method is used, fall in the same column. The letters are thus ailocat ed or distributed into the respective cipher alphabets to which they belong. This reduces the polyalphabetic text to monoalphabetic terme.
b. Then separate monoliteral frequency distributions for the thus isolated individual alphabets are conpiled. For example, in the case of the cipher on page 9, having determined. that four alphabets are involved, and having rewritten the message in four columns, a frequency distribution is made of the letters in Column 1, another is made of the leitters' in Coluan 2, and so on for the rest of the columns' 点ach df the resulting diatributions is therefore a nonoaliphabotic frequency distribution. If these distributions do not give the irregular crest and trough appearance of single frequency distributions, then the analysis which led to the hypothesis as regards the number of alphabets -involved is fallacious. In fact, the appiearance of these individual distributions may be considered to be an index of the correctness of the factoring process; for theoratically, and practically, the,individual diatributions constructed upon the correct hypothesis will fend to conform more closely to the irregular crest and trough appearance of a aingle alphabot frequency distribution than uill the graphic tables constructed upon an incorrect hypothesis:
4. Third atep: solving the monoalphabetic distributions. The difficulty experienced in analyzing the individual or isolated frequency distributions. depends mostly upon the type of cipher alphabets that is used. It is apparent that mixed alphabets may be used just as, aasily as standard alphabets, and, of course, the cipher letters themselves give no indication as to which is the cae日. However, just as it was found that in the case of monoalphabetic, subatitution ciphers a monoliteral-Praçuency distribution will give clear indications whether the cipher alphabet is a standard or a mixed alphabet, by the relative positions and extensions of the crests rand troughs in the table, so it is found that in the case of repeating-key ciphers, monoliteral freguency distributions fodr the isolated or individual alphabets will also give clear indications as to ohether these alphabets are standard alphabets or mixed diphabets. Only one or two such Irequency distributions are necessary for this determination; if they appear to be standerd alphabets, similar distributions can be made for the rest of the alphabets: but if they a;pear to be uixed aiphabots, then it is best to compile triliteral frequency distributions for all the alphabets. The
analysis of the values of the cipher letters in each table proceeds along the same lines as in the case of monoalphabetic ciphers, The analysis is more difficult only because of the reduced aize of the tables, but if the message be very long, then each freguency distribution aill contain a sufficient number of elements to onable a speedy solution to be achieved.

S.iction IV

Faragraph

Solution by applying principles of frequency. 13
Solution by completing the plain-component sequence 14
Solution by the "probable-word nethod". 15
13. Solution by applying principles of frequency. - a. In the light of the foregoing principles, let the following cryptogram be studied:

3GSSAGY

1	2	3	4	5

B FTIMI ZHBHR AYMZM ILVME JKUTG
C DPVXK QU云HQ LHVRM JAZNG GZYXI
D HIUTM PZJHV GHUAS HKQGK IPLWP
コ \quad JZXI_GUMTV DPTEJ ECMYS QYBAV
FALAYYOEXWVNYEYXEHUDPXR
G BVZVIZIIVO SPTEGXUBBRXIXXP
H WFQGK NLLEE PTIKW DJZXIGOIOI

L UAWPRNVIWE JKZAS ZLATM HS

A search for repetitions discloses the following short "list of most of the longer repetitions, with the intervals' and factors below 11 listed (far previous experience may lead to the conclusion that itis unlikely that the cryptogrem inyolves more than 10 alphabets;' 'showing the number of recurrences which 'it' does):

REF ID:A64561

b. The factor 5 appears in all but two cases, each of which involves only a digraph. It seems almost certain that the number of alphabets is five. Since the text already appears in groups of five letters, it is unnecessary to rewrite the message. The next step is to make a monoliteral frequency distribution for Alphabet 1 . to see if it can be determined whether or not standard alphabets are involved. It is as follows:

Alphabet 1.

c. Although the indications are not very clear cut, yet if one takes into consideration the small amount of data the assumption of a direct standard alphabet with $W_{c} \approx A_{p}$, is worth further test. Accordingly a similar distribution is made for Alphabet 2.

Alphabet 2.

d. There is every indication of a direct standard alphabet, with $H_{c}=A_{p}$. Let similar distribution be made for the last three alphabets. They ara as follows:

Alphabet 3.

Alphabet 4.

Alphabet 5.

Q. After but little experiment it is found that the distributions can best be made to fit the normal whon the following values are assumed:

$$
\begin{aligned}
& \text { Alphabet } 1,-A_{p}=W_{c} \\
& \text { Alphabet } 2--A_{p}=H_{c} \\
& \text { Alphabet } 3-A_{p}=I_{c} \\
& \text { Alphabet } 4-A_{p}=T_{c} \\
& \text { Alphabet } 5-A_{p}=E_{c}
\end{aligned}
$$

f. Note the key vord given by the successive equivalents of h_{p} WHITE. The real proof of the correctness of the analysis is, of course, to test the values of the solved alphabets on the cryptogram: The five complete cipher alphabets are as follows:

Fig. 'Z
g. Applying these valuss, to the first few groups of our message, the following is found:

h. Intelligible text at once results, and the solution can now be completed very quickly. The coriplete message is as follows:
hicountered red infaniry estimated at one pegimett aid machine GUN COMPANY IN TRUCKS NEAR EMMITSBURC. AM HOLDING MIDDLE CREEK NEAR HILL 543 SOUTHWEST OF FAIRPLAY. WHEN FORCED BACK WILL CONTINUE DELAYING REDS AT MARSH GREEK. HAVE DESTROYED BRIDGES ON MIDDLE CREFK BETWEEN MMTISBURG-TANEYTOWN ROAD AND RHODES MILL.
2. It is obvious that reversed standard alphabets may be used. The solution is accomplished in the same manner. In fact, the now obsolete cipher disk used by the United States Army for a number of years yields exactly this type of cipher and may just as readily be solved. In fitting the isolated frequency distributions to the normal direction of "reading" the crests and troughs is merely reversed.
14. Solution by completing the plain-component sequence. - a. There is another method of solving this type of cipher, which is worthwhile explaining, because the underlying principles will be found useful in many cases. It is a modification of the method of solution by completing the plain-component sequence, already explained in Per. 20 of Part I.
b. After all, the individual alphabets of a cipher auch as. the one just solved are merely standard direct alphabets. It has been seen that monoalphabetic ciphers in which standard cipher alphabets are employed may be solved almost mechanically by completing' the plain-component sequence. The plain text reappears on only one generatrix and this generatrix is the same for the whole message.. It is sesy to pick this generatrix out of all the other generatrices because it is the only one wich yields intelligible text. Is it not apparent that if the same process is applied to the cipher letters of the individual alphabets of the cipher just solved that the plaintext equivalents of these letters must all reappear on one and the same generatrix? But how will the generatrix which actually contains the plain-text letters be distinguishable from the other generatrices, since these plain-text lettors are not consecutive letters in the 'plain text but only letters separated from one another by a constant interval? The answer is simple. The plain-text generatrix should be'distinguishable from the others because it rill show more and a better assortment of high-frequency lotters; and can thus be selected by the eve froc the phole set of generatrices. If this is done with all the alphabets in the cryptogram, it will merely be necessary to assemble the letters of the thus selected generatrices in proper order, and the result should be consecutive letters forming intelligible text.
s. An example will serve to make the process clear. Let the same message be used as before. Factoring showed that it involves five alphabets. Lat the first ten cipher letters in aach alphabet be set down in a horizontal line and let the normal alphabet sequences be completed. Thus:

REF ID:A64561

	Alphabet 1	Alphabet 2	Alphabet 3	Alphabet 4	Alphabet 5
1	AJZINEEAIJ	UAYMFTHYLK		HK:GL_HZITT	YITXXXIRMSTG
2	BKahOFABJK	VBZHGUIZLIL	LNIJUJJCIN IN	- ILXPINIANU	ZJNYYJSNFH
3	CLBLI-GBCKL	WGAOHVJANEL	BOOKOKDOXT	תiYinojbov	AKOZZKTOGI
4	DICLOHCDIE	XDBPEFKBON	NPYLPLIPPYX	- Kinziothkcruj	BLPAALUPHJ
5	INDNRIDEAN	YECuJXLCPO	020:30iryzy	EOAKPSLDCX	CNOBTHIVIK
6	FOEOSJ 3 FNO	ZFDRITYad?	YRRNPNG.2AZ	CHPL , PRMESY	DNRCONTRJL
7	GPFPTKFGOP	AGUSLZIT3R	2SSOSOHSBA	NOCASSNESZ	EOS:DOXSKM
8	HQG.JULGHPY	BHFTIAAOFSR	RTTYTYITCB	ORDNSTOGEA	FYTEEYYTLN
9	IRHRVMII\R	CIGUIBPGGS	SUUQUQJFDG	PSIOTUFHUB	GOUFF?Zumo
10	JSIS'AJIJ, ${ }^{\text {S }}$	DJHVOCQHUT	TVVRVIKVED	QTFPUVOITV	HRVGGRAVNP
11	ETJTXOJKST	EKITPD:IIVU	U.	RUGQYURTTD	IS \quad HHSESVQ
12	LUKUYPELTU	FLJXQSSJ'V	VXXTXILIXGF	SVHziTKSKX3	JTXIITCXPR
13	LVLVZQLLUV	CHMYRTKCV	WYYUYUNYHG	TWISXYTLYF	KUYJJUDY ${ }^{\text {S }}$
14	NLLITARdNVN	HIILESGUULYX	XZZVZVOZII:	UXJTYZUNZG	LVZKIVEZRT
15	0xaxbsino x	IOXALTHMZY	YAE:NATPAJJ	VYKUZAVNAH	- hJallirasu
16	HYOYGTOLXY	JrabuInsiz		TZLVABWOBI	MXBIILXGBTV
17	QZPZDU ${ }^{\text {PYZ }}$	K2OCVJXOBA	ACCYCYRCLK	XANTBCXPCJ	OYCINYYHCUW
18	RAQAJV ${ }^{\text {dra }}$	LRPDiNKYPCB	B.DDZDZSDIL	YBNXCDY i DK	YZDOOZIDVX
19	S B3BFidiSAB	MSQ $2 \times 2 \mathrm{~L}$ ¢DC	Crwachtsmi	ZCOYDEZ:3L	
20	TCSCGXSTBC	NTRFYMARAD	DFFBARUFON	ADPZ 3 FASFII	RBFTQBKFXZ
21	UDFDHYTUCD	OUSGZNBSFS	IGGGGCVGPO	BZ? ${ }^{\text {a }}$ AGBTGN	ScGarclaya
22	VIUSILUVDE	PVIHAOCTGF	FHHDHD P /HQ	crizichicuho	TDHSSDWHE
23	Wrvejarisf	2VIIB?DUHG	GIIEIEXIR?	DGSCHIDVIP	USITTENIAG
24	XGTGKB /XFG	RXVJCQSVIH	HJJFJFYJSR	FHTDIJEsiJQ	VFJUFFOJBD
25	YHXHLCXYGH	SY:KDisFIJI	IKISGKGZKTS	FIUEJKXKR.	WGKVVGrKCE
26	2IYIGDYZHI	TZXLJSGXKJ	JLhHLIEALUT	GJVFKLGYLS	XHLTMH2LDF
	1.		Fig. 3		
d: If now high-frequency generatrices underlined'in Fig. 3 are selected and their letters are juxtaposed in columes, the conm secutive letters of intelligible plain text immediately present themselves. Thus:					
For Selected For Genera- For trices For For		or Alphabet. 2, generatrix 20 - NT R F YMARAD or Alphabet 4, generatrix $8-0$ R DNSTOGTA or Alphabet 5, generatrix $23-\mathrm{U}$ ITTTINIAC			
			I N	0 U	
		Columnar	N T	R D	
		juxtapos	ion N F	NT	
			, RY	S T	
		letters	from I L:	T	
		selected	D A	0 N	
		generatr	ices ER	GI	
			郒 E	T A	
		ND inf			

Fig. 4

Q. Solution by this method can thus be achieved without the compilation of any frequency tables whatever and is very quickly attained. The inexperienced cryptanalyat may have difficulty at first in selecting the generatrices which contain the most and the best assortment of high-frequency letters, but with increased practice, a high degree of proficiency is attained. After all it is only a matter of experiment, trial, and error to select and assemble the proper generatrices so as to produce intelligible text.
f. If the letters on the s liding strips vere accompanied by numbers representing their relative frequencies in plain text, and these numbers were added acress each generatrix then that generatrix vith the highest total frequency would theoreticaily always be the plain-text generatrix. Practically it fill be among the generatrices which show the first thres or four greatest totals. Thus, an entirely mathomatical solution for this type of cipher may be applied.
g. If the cipher alphabets are reversed standard alphabets, it is only necessary to convert the cipher letters of each isolated alphabet into their normal plain component equivalents and then proceed as in the case of direct standard alphabets.
h. It has been seen how the key word may be discovered in this type of cryptogram. Usually the key is made up of those letters in the successive alphabets whose equivalents are Ap. Sometimes a key number is used, such as 8-4-7-1-12, which means merely that A_{p} is represented by the eight letter from A (in the normal alphabet) in the first cipher alphabet, by the fourth letter from A in the second cipher alphabet; and so on. However, the method of solution as illustrated above, being independent of the nature of the key, is the same as before.
15. Solution by the "probable word method". - a. The common use of key worde in cryptograms such as the foregoing makes possible a method of solution that is simple and can be used where the more detailed method of analysis using frequency distributions or by completing the plain-component sequence is of no avail, so that in the case of a very short message which may show no recurrences and give no indications as to the number of alphabets involved, this modified method will be found useful.
b. Briefly, the method consists in assuming the presence of a probable vord in the massage, and referring to the alphabets to find the key letters applicable when this hypothetical word is assumed to be present in various positions in the cipher text. If the assumed word happens to be correct, and is placed in the correct location in the message, the key leitters produced by referring to the alphabets will yield the key pord. In the following example it is assumed that reversed standard alphabets are known to be used by the enemy.

MESSAGR

MDSTJ LQCXGKZASA NYYKO LP

c. Extraneous circumstances lead to the assumption of the presence of the word AMUNITION. One may assume that this word begins the message. Using sliding normal alphabete, one reversed, the other direct, one proceeds to find the key letters by noting what the successive equivalents of A_{p} are. Thus:

> If MDSTJLQCXC equals
> AMMUNITION, then the key letters ($=A_{p}$) are MPENWTJKLP.

The "key" does not apell any intelligible word. One therefore shifte the aseumed word one letter forward and another trial is made.

This a liso yields ns intelligible key word. One continues to shift the assumed word forward ons space at a time until the following point is reached:

If L $\mathrm{O}_{\mathrm{C}} \mathrm{CXCKASA}$ equals
AMMUNITION, then the key letters ($=A_{p}$) are LCORPSSIGN.

The key stands out: It is a cyclic permutation of the name SIGIAL CORHS. 1
d. If the assumption of reversed standard alphabets yields no good resulta, then direct standard alphabets are assumed and the test made exactly in the same manner. Solution by this method is inevitable when the correct vord has been assumed and its correct position ascertained. Hers again is an example of the efficacy of the "probable word" method. Furthermore, as will be shown subsequently, it can also be used as a last resort when mixed alphabets are employed.

[^3]e. It will be seen in the foregoing method of solution that the length of the key is of no particular interest or consequence in the eteps taken in effecting the solution. The determination of the length and elements of the key cowes after the solution rather than before it. In this case the length of the period is seen ta be eleven (SIMNaL CORIS).
f. The foregoing methad is one of the 'ather methods of determining the length of the key (besides factoring), referred to in Par. 10 g.

SהCTION V

REPFATING-KEY SYSTEMS WITH MIXED CIPFER ALHIABEIS, I.
Paragraph

Reason for the use of mixed alphabets:
 16

Interrelated mixed alphabets 17
Yrinciples of direct symametry of position. 18
Initial ateps in the solution of a typical example, 19
Application of principles of direct symmetry of position . . 20
Subsequent steps in solution 21
Complating the solution. 22
Solution of subsequent messages enciphered by same cipher component 23
Summation of relative frequencies as an aid to the selection of the correct generatrices 24

16. Reason for the use of mixed alyhabets. - a. It has been seen in the examplas considered thus far that the use of several alphabets in the same message does not greatly conplicate the analysis of such a cryptogram. There are three reasons why. this is so: Firstly, only relatively few alphabets were employed; secondly, these alphabets were employed in a periodic or rèpeating manner, giving rise to cyclic phenomena in the cryptogram, by means of which the number of alphabets "could be determined; and, thirdly, the cipheralphabet were known alphabats, by which is meant merely that the eequences' of letters in both components of the cipher alphabets were known sequerices.
b. In the case of monoalphabetic ciphers it was found thet the use of a mixed alphabet delayed the solution to a considerable degree, and it will now be.seen that the use of aixed alphabats in polyalphabetic ciphers renders the analysis much more difficult than the use of atandard alphabste, but the solution is still fairly easy to achieve.
17. Interrelated mixed alphabets. - a. It was stated in Par. 2 that the method of producing the mixed alphabets in a polyalphabetic cipher often affords clues which are of great assistance in the analysis of the cipher alphabsts. This is so, of course, only when the cipher alphabots are interrelatad pecondary alphabets produced by sliding components. Peference is now. made to the clessification set forth in lar. 6, in oonnection with the types of alphabets which may be employed in polyaliphabetic aubstitutione. It will be seen that thus far only Cases $\mathrm{A}(1)$ and (2) have been treated. Case $B(1)$ will now be discussed.
b. Here one of the components, the plain component, is the nornel sequerice, while the cipher component is a mixed sequences the sliding of the two components ytelding mixed alphibets. The mixed oomponent may be a systematically-mixed or a random-mixed sequence. If the successive alphabets produced bfy the sliding of two such components are set down as in the case of the Vigenere Square, a symmetrical square such as that shom in Fig. 5 results tharofrom.

Fig. 5
c. Such a table may be used in exactly the same manner as the Vigenere Table. With the key nord BLU. the following secondery alphabets would be used:

Fig. 6
18. Hrinciples of diract symmetry of position. - ㅌ. It was stated directly above that Fig. 5 is a symetrical cipher square, by Fhich is meant that the letters in its successive horizontal lines show a direct symmetry of position with reapect to one another: They constitute, really, one and only one s.equence or series of letters, the sequences being merely disilaced successively l, 2, 3, ... intervals. The symmetry exhibited is obvious and is said to be patent, or "direct". This fact can be used to good advantage.
b. Consider, for example, the pair of letters G and V in the B, or lat, cipher alphabet directly above; the letter V 'is the l5th letter toithe risht of G. In the L, or $2 d$, cipher alphabet, V is also the 15th letter to the right of G, as is the case in evory one of these secondary alphabets, since the relative positions they occupy are the same in each horizontal line, that is, in each cipher alphabet. If, therefore, the relative positions occupied by a given pair of letters in one of these cipher alphabsts is known, and one of the members of this same pair has been located in another of these cipher alphabets, one may at once place the otiner member of this pair in its proper position in the second of the cipher alphabets. Suppose, for example, that as thie result of an analysis based upon considerations of frecusncy, the following valuss in a given cryptogram have been tentatively determined:

The letter G is common to hlphabets 1 and 2. In Alphabet 2 it is noted that \ddagger occupies the loth position to the left of G, and the letter \mathcal{F} occupies the 5 th position to the right of G. One nay therefore place these letters, N and Y, in their proper positions in Alphabet-I, the letter \mathbb{N} being placed 10 letters before G, and the letter $P_{g}, 5$ letters after G_{p} Thus:

Thus, the values of two new letters in Alphabiet 1 , viz, $P_{c}=J_{p}$, and $N_{c}=U_{p}$ have been automatically determined; these val uee were obtained without any analysis based upon the frequency of P_{c} and N_{c} Likewise, in Alphabot 2, the letters I and V may be inserted in these positions:

This gives the new walues $Y_{c}=D_{p}$ and. $Y_{c}=Y_{p}$ in Alphabet 2. . Alphabets 3 and 4 have a cormon letter I, which permite of the flacement of \vee and.I in Alphabet 3, and of B and L in Alphabet .4.
c. The netr values thus found are of course immediately ine erted throughout the cryptogram, thus leading to the assumption of further values in the cipher text. This procese, the reconstruction of the primary components by the application of the principlas of direct symmetry of position, thus facilitates and hastons solution.
d.- It must be clearly underatood that before the principles of direct syumatry of position can be applied in cases such as the foregoing, it is necessary that the plain component be a known sequence. Thether it is the normal sequence or not is inmaterial, so long as the sequence is known. Obviously, if the sequence is unknown, synmetry even if present, cannot be detected by the cryptanalyst because he has no base upon which to try out his assumptions for symmetry. In other $\begin{gathered}\text { orde, } \\ \text { direct eymmetry of position is manifested in the illus- }\end{gathered}$ trative example because the plain component yas a inorm sequence, and not because it was the normal alphabet. The significance of this point will become ajparent later on in connection vith the problea discussed in Par. 260.
19. Initial steps in the solution of a typical exanple. - a. In the light of the foregoing principles let a typical message no.s be studied.

REF ID：A64561

MaSBAGIS

1	2	3	4	5

A	Q PB BI	V Y C A	IS F J L		的 Y TU
B	L i $1: ~ G \underline{1}$	ICJCI	WTZコI	EIBKN	3^{-J} Brin
C	V＇IY I ${ }^{\text {\％}}$	B INB \％	\＆CGQ	IW J KA	G 3 GXN
D	I DERU	V 3 Y Y G	GIGVN	CTGY0	BPDBL
ヱ	VGGXG	BKZZ C	IVXCU	NTZAO	B 7 F $\boldsymbol{3} 9$
F	QLFCO	M T Y ZT	CCBY	OPDEA	GDGIG
G	V J＇tik	Q I I JW	ICGXG	BLG： 7	$V \mathrm{BGRS}$
27	退 Y J J Y	：V FWY	RWNFL	GXIIFW	二 C J に X
J	I DDRU	0 PJママ	2RHCN	VY区	RコGDG
π	BXDB	PXFPU	YXNTG	HPJTL	SANCD
L	S 2 ZZG	I B in Y	KDHCA	m B J J F	K I L C J
4	M F D Z T	CTJR	VII Y ZQ	ACJRR	S B G Z N
N	\％ YaHz	V $2 \mathrm{DC} \mathrm{\%}$	LXNCL	LVVCS	\underline{Y}／BII
\boldsymbol{p}	IVJRN	HNBEI	V ${ }^{\text {J J }}$	TAGDN	
2	ATY $\mathrm{IT}^{\text {I }}$	C B Y Z T	EVG4U		LRENQ
R	XIIJBA	I K ：J＇J	RDZYF	KフFZL	G：FJQ
3	\％リJ \％	I B ： R X			

b．The principal repetitions of three or nore letters have been underlined in the message and the factors（up to 20 only）of the intervals between then are as follows：

$$
\begin{aligned}
& \text { QTBRIVTY - } 45=3,5,9,15 \\
& \underset{\text { PJill }}{\operatorname{CGXGB}}=60-2,3,4,5,6,10,12,15,20
\end{aligned}
$$

$$
\begin{aligned}
& \text { [CAG }-75=3,5 \text {; } 15
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { YZT =- } 225=3 ; 5 ; \\
\text { ZTC }-145=3 ; 5
\end{array}
\end{aligned}
$$

The factor 5 is compon to "bll of these repetitions, and there seems to be every indication that five alphebets are 'nvolved. Sinoe the message already apoears in groups of five letters, it is unnecessary in this case to rewrite it in groups corresponding to the length of the key. The monoliteral frequency distribution for Alphsbet 1 is as follows:

Fig. 8.
c. Attempts to fit this distribution to the normel on the basis of a direct or reversed stendard alphebet do not give positive results, and it is assumed thet mixed alphabets are involved. Individual trigraphic; frequancy distributions are then compiled and are shown in fig. 9: These tables are similar to those made for single maxed alphebet ciphers, and are made in the same way except thet instecd of teking the letters one after the other, we now must assemble in separete tables the letters which belong to the seperete elphabets. For example, in 'Alphebet 1, the trigraph QAC meens that A occurs in Alphebet i; Q, - its prefix, occurs in Alphebet 5, and C, its suffix, occurs in Alphebet 2. We may evoid ell confusion by placing numbers indicating the elphebets in which they belong above the letters, thus: 512.

Fig. 9.

Alphabet 2.

Alohayint. 3 .

REF TD:A64561

Alphabet 5.

Condensed table of repetitions:

a. One now proceads to analyze each alphabet distribution, in an endeavor to establish identificetions of cipher equivalents. Firsti, of course, attempts should be made to separate the vowels from the con- .sonants in each alphabet, using the same test as in the case of a simple mixed alphabet cipher. There seems to be no doubt about the equivalent

Q. The letters of ereatest frequency in Alphabet 1 are $1, M, 0$, ∇, B, G, I, R, S, and C. I_{C} has already been assumed to be، \mathbb{I}_{p}. $I f_{1}$. ${ }^{2}$ wa $5_{c}=F_{p}$, then ore ahould be able to distinguish the vowels from the consonants among the letters $M, Q, V, B_{S} G, L, R, S$, and C by expmining the prefixes of \mathbf{W}_{c}, and the suffizes of \mathcal{C}_{C}, The prefires and suffífes of these letters, as shown by the trigraphic frequency tables, are these:

$$
\text { Prefixes of }{\frac{2}{W_{c}}}_{c}\left(=\frac{2_{p}}{2_{p}}\right)
$$

Suffires of $\boldsymbol{K}_{c}\left(=\mathbf{5}_{p}\right)$
f. $2^{\text {Consider now the letter }}{ }_{5}^{\frac{1}{M_{C}}}$; it does not occur either as a prefix of $\frac{2}{W_{c}}$, or as a suffix of ${\underset{Q}{c}}^{c}$. Hence it is most probably a vowel, and on account of its high frequency it may be assumed to be O_{p}. On the other hand, note that ${ }_{5} Q_{c}$ occurs five times as a prefix of $\frac{2}{\bar{W}_{c}}$ and three times as a suffix of $\overline{5}$. It is therafore a consonant, most probably R, for it would give the digraph $\overline{K R}\left(=\boldsymbol{q}_{h_{c}}\right)$ as occurring three times and HE ($\mathrm{H}_{\mathrm{C}}^{\mathrm{C}}$) as occurring five times.
g. The letter \bar{V}_{C} occurs three times as a prefix of \vec{W}_{c} and twice as a auffix of $\dot{\delta}_{c}$. It is therefore a consonent, and on account of ita frequency, let it be assumed to be \mathbb{T}_{p}. The letter \bar{B}_{c} occurs twice as a prefix of $\frac{2}{W_{c}}$ but not as a suffix of \mathbf{q}_{c}. Its fraquency is only medium, ani it is probably a consonant. In fact, the trice repeated digraph $\frac{12}{B}{ }_{c}$ is once a part of the trigraph $5 \mathbf{G} \frac{1}{2}$, and 5_{c}, the letter of second highest frequency in Alphabet 5 , looks excellent for T_{p}. Might not the trigraph

h. The letter $\frac{1}{G_{c}}$ occurs only once as a prefix of $?_{c}$ and does not occur as a suffix of $\tilde{\delta}_{c}$. It may be a vowel, but one can not be sure.

1. The letter Q has four tallies under it, plus one occurrence indicated by the presence of the letter itself among the prefixes, equals five occurrences. The same applies to the other letters.

REF ID:A64561

- 33 -
 it may be considered to be a consonant. \dot{k}_{c} occurs once as a prefix of f_{i}, and twice as a suffix of \mathfrak{f}_{c}, and is certainly a consonant. Neither the letter $\overline{\mathrm{S}}_{\mathrm{c}}$ nor the letter $\underline{\mathrm{b}}_{\mathrm{c}}$ occurs as a prefix of $\hat{\mathrm{T}}_{\mathrm{c}}$ or as a suffix; of $\tilde{\zeta}_{\mathrm{c}}$; both mould seem to be vowels, but a study of the prefixes and auffixes of these letters lends more weight to the assumption that $\frac{l_{c}}{\mathrm{C}_{\mathrm{c}}}$ is a vowel then that $\frac{1}{c}_{c}$ is a vowel. Tor all the prefixes of C, viz, 5. 5, and 5 , are in aubsequent analysis of Alphabat 5 clasaified as consonants, as are likewise its suffixes, $\mathrm{Viz}, \mathrm{T}, \mathrm{C}$, and B in $\boldsymbol{A l}$ phabet 2. On the other hand, only one prefix, ${\underset{\mathcal{F}}{c}}^{c}$, and one auffix, ${\underset{B}{c}}^{2}$, of \mathcal{S}_{c} are later clabsified as consonants. Since vowels are more of ten associated with consonants than with other vowels, it would seem that ${ }^{\frac{1}{c}}{ }_{c}$ is more likely to be a rowel than $\frac{1}{s_{c}}$. At any rate $\frac{1}{c}_{c}$ is assumed to be a rowel, for the present, leaving \bar{S}_{c} unclassified.

1. Going through the eame steps with the remaining alphabets, the following results are obtained:

Alphabet Consonante Vowels:
1
Q, $\nabla, B, L, R, G P$
I, M, C
2
B, G, D, T
: ' \quad T, P, I
J, $\mathrm{N}, \mathrm{D}, \mathrm{Y}, \mathrm{P}$
G, Z
4
5

Y, Z, J, Q
C, $\mathbf{E P}, \mathrm{RP}, \mathrm{BP}$
G, N, A, I, T, L, T
Q, $\quad 0$
20. Application of principles of airect symmetry of position. - A. The next etep is to try to determine a few values in each alphabet. In Alphabet 1 , from the analysis above, the following data are on hand:

$$
\begin{aligned}
& \text { Plain - ABCDEFGHIJXLMNOPQRSTUVTXYZ } \\
& \text { Cipher - Ci I Cl M Q V }
\end{aligned}
$$

Let the values of \mathbb{E}_{p} alrasdy assumed in the remaining alphabets, be set dawn, as follows:

Fig. 10
b. It 2 s seen thet by good fortune the letter Q is common to Alphabets 1 and 5, and the letter C is common to Alphabets 1 and 4. If it is assumed that one is dealing with a case in which a mixed component is sliding against the normal component, one can apply the principles of direct symmetry of position to these olohabets, as outlined in Par. 16. For example, one may insert the following values in Alphebet 5:

Fig. 11
c. The process at once gives three definite values. $\mathbb{K}_{c}=B_{p}$, $\boldsymbol{F}_{c}=G_{p}, \mathcal{F}_{c}=R_{p}$ Let these deduced values be substantiated by referring to the frequency distribution. Since B and G are normally low or medium frequency letters in plain text, one should find that M_{c} and V_{c}, their hypothetical equivalents in Alphebet 5, should have Jow frequencies. As a matter of fact, they do not appear in this alphebet, which thus far corroborates the assumption. On the other hend, since ${\underset{F}{c}}=R_{p}$, if the values deriyed from symmetry of position are correct, \mathfrak{F}_{c} should be of

REF ID:A64561

high frequency, and it is. The position of C is doubtful, it belongs either under N_{p} or ∇_{p}. If the f ormer is correct, then the frequency of $\overline{5}_{c}$ should be high, for it would eaual N_{p}; if the latter is correct, then its frequency should be low, for it would equal ∇_{C}. As a matter of fact ${ }_{5}{ }_{c}$ does not oocur, and it must be concluded that it belongs under V_{p} This in turn settles the value of $\frac{l_{c}}{c}$, for it must now be placed definitely under I_{p} and removed from beneath A_{p}.
d. The definite placement of C now permits the insertion of new values in Alphabet 4, and one now hes the following.

21. Subsequent steps in solution - a. It is high time that the thus for deduced values be inserted in the cioher text, for by this time it must seem that one has certainly gone too far with work based upon unproved hypotheses The following results.

REF ID:A64561

- 36 -

NGSSAGE

$\begin{aligned} & \text { QWBRI } \\ & R E R E R \end{aligned}$	${ }_{\text {VTY }}^{\text {VI }} \mathrm{E}$	${ }_{\mathrm{E}}^{\text {ISPJL }}$	RBzEY	$\mathrm{ReS}_{\text {QTYEU }}$	$\underset{\mathrm{E}}{\mathrm{LTMGT}}$	$\underset{E}{\text { ICJCI }}$	$\underset{0}{\text { MTzeI }}$	${ }_{0}^{\text {MIBEN }}$	QTBRI $R E R$
VWYIG	BNNBQ	QCGQE	ITJJKA	GECXN	IDMRU	vezyg	qigur	ctayo	BPDBL
ITE	E E	R EN	2x	E	£	T	R $\mathbb{E P}$	I E	
VCGXG	bKZZG	IVXCU	nTzaO	B. FFEQ	QLifco	MTYZT	CCBYQ	OPDEA	gdaig
TE		E E		$\pm E$	R E	0			EA
VPWMR	QIIETN	ICGXG	BLGQQ	vB'GRS	MYJJY	QVFWY	RTNFL	CXNFW	MCJKX
T \mathbb{L}	R	3 E	EnE	T ${ }^{\text {I }}$	0	R	- E		0
IDDRU	OPJQQ	2RHCN	VWDYQ	RDGDG	BXDBI	PXFPU	YXNFG	MPJEL	SANCD
E		2	TE E	E				0	I
SEZZG	IBEYU	KDHCA	MBJJF	KILCJ	MFPDIT	CTJRD	MIYZQ	ACJRR	$\underset{\mathbb{E}}{\mathrm{SBGZN}}$
	E	3.	0	E		I	0 S		
QYAHQ	VEDCE	LXNCL	LVVCS	QibII	IVJRN	7 NBRI	VPJJI	Iagdn	IRGQP
$\mathrm{R} \boldsymbol{2}$	T ET	2	E	RS AR	I	R	I	E	E EN
atyen	CBYZT	dvgqu	VPYHL	LRzNQ	XINBA	IKITJQ	RDZYT	KIFFZL	GTIFJQ
Qinjue	IBWRX								
RE E	2								

b. The combinations given are excellent througnout and no inconsistencies appear. Note the trigraph $\frac{123}{}$, which is repeated in the following polygraphs (underlined in the for egoing text)

c The letter \vec{B}_{c} is common to both polygrephs, and a little imaginetion will lead to the assumption of the value $\mathcal{B}_{c}=P_{p}$, fielding the following
 looks like the word ATPACK The frequency distribations are consulted

REF ID:A64561

- 37 -
to see whether the freauencies given for ${\underset{F}{c}}^{\mathcal{F}_{c}}$ and ${\underset{P}{P}}_{P_{c}}$ are high enough for T_{p} end A_{0}, respectively, end elso whether the frequency of \mathbb{W}_{c} is good enough for C_{0}; it is noted thet they ere excellent Moreover, the di-
 Does the insertion of these four ner values in our diegram of alphebets bring forth ony inconsistencies? The insertion of the value ${\underset{P}{P}}_{P_{c}}=A_{0}$ End $\frac{\bar{B}_{c}}{B_{c}}=H_{p}$ Eives no indications either way, since neither letter has yet been loceted in any of the other elphebuts. The insertion of the value ${\underset{G}{c}}^{F_{p}} T_{p}$ \{ives a value common to Alohabets 3 and 5 , for the value $Z_{c}=E_{p}$ was assumed long ago. Unfortunately an inconsistency is found here. The letter I has been placed two letters to the left of G in the maxed comoonent, and has given good results in Alphebets 1 and 5 , If the value $\overline{3}_{c}=C_{p}$, as obtained above from the assumption of the word ATTACK, is correct, then \mathbb{W}, end not I, should be the second letter to the left of G. Which shall be retalned? There has been so far nothing to establish the value of $\vec{G}_{c}=F_{p}$, this value was assumed from frequency considerations solely. Perhaps it is wrong. It certainly behaves like a vowel, end one may see whet happens when one chengeśs its value to θ_{0}. The following placements result from the analysis when only two or three new values have been added as a result of the clues afforded by the deductıone".

REF ID:A64561

- 38 -

Fig. 13 a
e Many net val ues are produced, and these are inserted throughout the message, yzelding the following

QRTBRI	VWYCA	${ }_{\text {EMPIL }}^{\text {ISPJL }}$	${ }_{\text {SR }}^{\text {RBEY }}$	$\mathrm{RESTMU}_{\text {REM }}$	$\underset{\text { LIMCH }}{\text { LMMG }}$	$\begin{aligned} & \text { ICJCI } \\ & \mathbb{E S} \mathbb{E R} \end{aligned}$	${ }_{0}^{\text {MTZEI }}$	$\begin{aligned} & \text { MIBKN } \\ & 00 P \end{aligned}$	${ }_{\text {REPCR }}$ QTBRI
VHYig	BINBQ	QCGQ	ITJJKa	gegat	IDMRU	vezyg	QIGVN	crgyo	BPDBL
TR AT	EE DE	RSON	EE	G 0	区 ${ }^{\text {W0 }}$		ROOP	I 0	HA D
vGGXG	BKZZG	ivxcu	nTZAO	BiTFEQ.	QuFco	MTYZT	CCBYQ	OPDKA	gdgig
TSO T	E T	ED E		HE E	R E	0	ISP ${ }^{\text {I }}$	1	G OAT
VPWMR	QIIEM	ICGAG	BLGQQ	vagrs	MYJJY	QVEWY	R ${ }_{\text {InFLI }}$	GXINT	CJKX
tackr	Rom H	ESO	H ONE	troor	0	RD Q	SE.	G H	
IDDRU	OPJGQ	ZRHCN	vFDIQ	RDGDG	BxDbn	PRPPU	YxNFG	MPJEL	Sancd
E 0	A NE	C E	TE E	S OT	H D	Q M	T	OA	C E
SEZZG	IBEYU	крНСА	MBJJF	KILCJ	AFPD2T	CTJRD	MIYZQ	ACJRR	SBGZN
T	[RR	.	OR	0 E	-	I 0	00 E	S OF	CRO
QYAHQ	VEDCQ	LXXNCL	LVVCS	QWBII	IVJRI	WIMBRI	VPJEL	TAgDi	IRGQP
I	T EP	E	DBEP	repar	ED 0	U POR	TA	0	mCOND
ATYEW	CBYZT	EVGQU	VPYHL	LRZNQ	XInBA	IKMJQ	RDZYF	KWFZL	GWFJQ
${ }^{-1}$	IR	DON	TA	C E	0 D	E E	s	E	GE E
RE E ER 0									

22 Completing the solution. - e Completion of solution is now a very easy matter. The maxed component is finally found to be the following sequence, based upon the word IXHAUSTING

$$
\text { EAH } 4 \text { USTINGBCDFJKLYOPQKV।YZ }
$$

Fig. 13 b .
b. Note that the successive equivelents of A_{p} spell the word APRIL, which is the key for the message The plain-text message is as follows:

REPORTED ENEMY HAS RETIRED TO NENCHESTER ONE TROOP IS REPORTED AT HENDERSON MEETIIG HOUSE. MWO OTHER TROOPS IN ORCHARD AT SOUTEWESI EDGE OF NETCHESIER $2 D$ SQ IS FREPARI IGG TO ATTACK FRUM IEX SOUTH ONE TROOP OF $3 D$ SQ IS ביבGAGING HOSTILE TROOP AI NE"CHESTRR REST OF 3D SE IS MOVING TO AITACK NENCHESTITR FROM JHE NURTH MOVE YOUR SG INTO TIOODS EAST OF CROSSROAD 539 AND BE PREPARED TO SUPPORT ATTACK OF 2D AND 3D SG DO NOT ADVATCE BEYOND IENCHESTER MESSAGES HERE

TREER,
COL
c The oreceding case 1 s a. good examole of the value of the principles of direct symmetry of position when apolied proverly to a cryptogram enciphered by the sliding of a mixed componert against the normal. The cryptanalyst starts off witn only a very limited number of assumptions and builds up many new values as a result of the placement of the few original values in the diagram of the alphabets.
23. Solation of subsequent messages enclphered by the same cipher component - a Freliminary remarks Let it be suodosed thet the corresponderts are using the seme basic or orimary component but with dafferent cey words for other messages. Can the knowledge of the sequence of letters in the reconstructed primary commonent be used to solve the subsequent messages? It has beer shown that in the case of a monoalphabetic cipher in which a maxed alphabet was used, the process of completing the plain component could be applied to solve subsequent messages in which the same clpher component was used even though the cipher component was set at a different key letter. A modufication of the procedure used in that case can be used in this case, where a plurality of cipher alphabets based upon a sliding primary component is used.
b. The message Let it be subposed that the following message passing between the same two correspondents as in the preceding message has been intercepted.

MESSAGR

SFDZR	YRRKX	MIWLI	AQRLU	RQFRT	IJQKF	XUWBS	MDJZK
MICQC	UDPMV	TYRNA	TRORV	BQLTI	QBNPR	RTUHD	PTIVE
RMGQN	LRATQ	PLUKE	KGRZF	JCMGP	IHSMR	GQRFX	BCABA
OEMIL	PCXJM	RGQSZ	VB				

c Factoring and conversion into plain component equivalents. The presence of a repetition of a four-letter polygraph whose interval is 21 letters suggests a key word of seven letters There are very few other revetitions, and this is to be eroected in a short message with a key of such length.

1234567
SFDZRYR
RKXHITL
LAQRIUR
QFRTIJQ
K FXU. XB S
MDJZKMI CQCUDPT VTYRNHT RORVBQL TIQBNPR RTUHDPT IVERMGQ NLRATGP LUKRKGR ZFJCMGP
IHSMRGQ RFXBCAB AOEMTLP CXJMRGQ s 2 VB

Fig. 14
d Transcription into periods Let the message be written in groups of seven letters, in columnar fashion, as shown in Fig. 14. The letters in each column belong to a single alohabet. Let the letters in eacn column be converted into their plain component equivalents by setting the reconstructed cipher component against the normal alphabet at any arbitrarily selected point, for examole, that shown below

1234567
FNMZVYV
VPBRHXQ
QDUVQEV
UNVGHOU PNBAXKF R MOZPRH LULEMTG WGYVICG VSVWKUQ GHUKITV VGECMTG H \mathbb{T} A V R J U IQVDGUT QEPVPJV ZNOLRJT HCFRVJU VNBKLDK DSARGQT L BORVJU F 2 NK

$$
\text { Fig } 15
$$

Plain--ABCDEFGHIJKLMNOPQRSTUVWXYZ Clpher - EXHAUSTINGBCDFJKLMOPQRVWYZ

The columns of equivalents are now as shown in Fig. 15.

REF ID:A64561

- 41 -
e. Examination and selection of generatrices It has been shown that in the case of a monoalohabetic eipher it was merely necessary to complete the normal alphabet seauence beneath the plain-component equivalents and the plain text all reappeared on one generatrix. It was also found that in the case of a multiple-alohebet cioner involving standerd alphabets, the plain-text equivalents of each alohabet reappeared on the same generatrix, and at was necessary only to combine the proper generatrices in order to produce the plain text of the message. In the case at hand both processes are combined: the normal alphabet sequence is continued beneath the letters of each column and then the generatrices are combined to produce the plain text The completion diagrams for the farst two columng are as follows (Fig 16).

$$
\text { Column } 1
$$

FVQUPRLTVGVHIQZHVDLF GWRVGEMXYEAIJRAIWEMG EXSWRTNYXIXJKSBJXFNH IYYXSUOZYJYKKLTCKYGOI JZUYTVPAZKZIMUDLZEPJ KAVZUWQBALAMAVEMAIQK LBWAVXRCBMBNOWFNBJRL MCXBTYSDCNCOPKGOCKSM NDYCXZTEDODPQYHPDLTN OEZDYAUFEPEQRZIQEHUO PFAEZBVGFQFRSAJRFNVP QGBFACWHGRGSTBKSGOTQ RHCGBDXIHSHTUCLTHPXR SIDHOEYJITIUVDMUIQYS TJEIDFZKKUJVWENVJRZT UKFJJGALKVKWWFOWKSAU VLGKFHBMLWLXYGPXLTBV WMHLGICNNXIYZHQYMUCW XIIMEJTONYITZAIRZNVDX YOJNIKEPOZOABJSAOWEY ZPKOJLFQPAPBCKTBPAFZ AQLPKMGRQBQCDLUCQYGA BRMQUNHSRCRDEMVDRZHB CSNRMOITSDSEFNTESAIC DTOSNPJUTETFGOXFTBJD ETJPTOQKVUFUGHFYGUCKE

2	t. The results are shown in Fig 18
0	This process is a very valuable and in
S Q	the solution of messages after the pri-
N E	mary comporent has been recovered as a
R 0	result of the longer and more detailed
M 0	analysis of the frequency tables of the
N	first message intercepted. Very often
I V	a short message can be solved in no other
T H	way than the one shown, when the primary
ST	alphabet is completely known.
D	
SH	g. Recovery of the key It may
E X	be of interest to find the key word for
F R	the message. All that is necessary is
N F	to set the mixed component of tne cipher
W	alphabet underneath the plain component
E D	- so as to produce the cipher letter in-
S 0	diaated as the equivalent of any given
A T	plain-text letter in each of the alpham
1	bets For example, in the first alpha-
C A	bet it is noted that $C_{p}=S_{c}$. Setting the two components under each other so
F1g. 17	as to bring S of the cipher component beneath C of the plein component, thus

Fig 18

Plaın: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher. EXHAUSTINGBCDFJKLMOPQRVWYZ

It is noted that $A_{p}=A_{c}$. Hence, the first letter of the key word to the message is A The 2d, 3d, 4th, ... 7th key letters are found in exactly the same manner, and the following is obtained.

When COFIRST equals
S F D ZRYR then A_{0} successively equals
AZIMUTH
24. Summation of relative frequencies as an ald to the selection of the correct generatrices. - a In the foregoing example, under subparagraph f, there occurs this phrase. "After some experimenting with these generatrices." By this was meant, of course, that the selection of the correct initial pair of generatrices of plain-text equivalents is in this process a matter of trial and error. The test of "correctness" is whether, when juxtaposed, the two generatrices so selected yield "good" digraphs, that 1s, high-freauency digraphs such as occur in normal plain text. In his early efforts the student may have some difficulty in selecting, merely with his eyes, the most likely generatrices to try There may be in each diagram several generatrices wnich contain good assortments of high-frequency letters, and the number of trials of combinations of generatrices may be quite large Perhaps a slmple mathematical method may be of assistance in the process.

REF ID:A64561

$-43-$
b. Suopose, in Fig 16, that each letter were accompanied by a number which corresponds to its relatave frequency. Then, by adding the numbers along each hor:zontal line, the totals thus found will give a numerical measure of the frequency value of each generatrix. Theoretically, the generatrix vith the greatest value will be the correct generatrix because its total will represent the sum of the individual values of the actual plein-text letters. In actual practice, of course, the generatrix with the greatest value may not be the correct one, but the correct que will certainly be amqng the three or four generatrices with the largest values. Thus, the number of trials may be greatly reduced, in the attemet to put together the correct generatrices
c. Using the preced.ng message as an example, note the respective generatrix values in Fig. Ig

											olum	n 1			,						$\begin{gathered} 0 \\ 0 \\ 0 \\ \ddot{0} \\ \ddot{0} \\ 0 \\ 0 \\ \hline \end{gathered}$
0	F	V	Q	U	P	R	L	W	V^{-}	G	V	H	I	Q	2	H	V	D	L	F	
	3	2	0	3	3	8	4	2	2	2	2	3	7	0	0	3	2	4	4	3	57
1	G	W	R	V	Q	5	M	X	W	H^{+}	-	I	J		- A	I	T	E	N	G	
	2	2	8	2	0	6	2	0	2	3	2	7	0	8	7	7	2	13	2	2	77
2	H	X	S	W	R	T	N	Y	X	I	X	J	K	S	-B	J	X	F	N	H	
	3	0	6	2	8	9	8	2	0	7	0	0	0	6	1	0	0	3	8	3	66
3	I	Y	T	X	S	U	0	2	Y.	J	Y	K		T	C	K	Y	G	0	I	
	7	2	9	0	6	3	8	0	2	0	2	0		9	3	0	2	2	8	7	74
4	J	2	U	Y	T	V	P	A	Z	K	z	L	M	U	D	I	Z	H	P	J	
	0	0	3	2	9	2	3	7	0	0	0	4	2	3		4	0	3	3	0	49
5	K	A	v	Z	U	W	Q	' B	A	1	A	M	N	V	E	M	A	I	Q	K	
	0	7	2	0	3	2	0	1	7	4	7	2	8		13	2	7	7	0	0	74
6	1	B	W	A	V	X	R		B	M	B	N	0	T	F	N	B	J	R	I	
	4	1	2	7	2	0	8	3	1	2	-1	8	8	2	3	8	1	0	8	4	73
7	M	C	X	B	W	Y	5	D	C	N	0	0	F	X	G	0	C	K	S	M	
	2	3	0	1	2	2	6	4	3	8	3	8	3	0	2	8	3	0	6	2	66
8	N	D	Y	c	X	2	T	E	D	0	D	P		Y	H	P	D	L	T	N	
	$\overline{8}$	4	2	3	0	0	9	13	4	8	4	3	0	2	3	3	4	4	9	8	91

Fig. 19 (con'tinued)

Columin 1 (continued)

11
$\begin{array}{llllllllllllllllllll}Q & G & B & F & A & 0 & \text { i } & H & G & R & G & 8 & T & B & \mathbf{I} & \mathbf{S} & G & 0 & T & Q \\ 0 & 2 & 2 & 3 & 7 & 3 & 2 & 3 & 2 & 8 & 2 & 6 & 9 & Z & 0 & 6 & 2 & 8 & 2 & 0\end{array}$
-. $44-$
$\begin{array}{llllllllllllllllllll}\mathbf{R} & \mathbf{H} & \mathbf{C} & \mathbf{G} & \mathbf{B} & \mathbf{D} & \mathbf{X} & \mathbf{I} & \mathbf{H} & \mathbf{S} & \mathbf{H} & \mathbf{T} & \mathbf{U} & \mathbf{C} & \mathbf{L} & \mathbf{T} & \mathbf{H} & \mathbf{P} & \mathbf{X} & \mathbf{R} \\ \mathbf{8} & \mathbf{3} & 3 & 2 & 1 & 4 & 0 & 7 & 3 & 6 & 3 & 9 & 3 & 3 & 4 & 9 & 3 & 3 & 0 & 8\end{array}$
82
$\begin{array}{lllllllllllllllllllll}13 & S & I & D & H & C & T & I & J & I & T & I & U & V & D & M & U & I & Q & I & S \\ & 6 & 7 & 4 & 3 & 3 & 13 & 2 & 0 & 7 & 9 & 7 & 3 & 2 & 4 & 2 & 3 & 7 & 0 & 2 & 6\end{array}$ 90
 $\begin{array}{lllllllllllllllllllll}9 & 0 & 13 & 7 & 4 & 3 & 0 & 0 & 0 & 3 & 0 & 2 & 2 & 13 & 8 & 2 & 0 & 8 & 0 & 9 & 83\end{array}$
 65

$\begin{array}{llllllllllllllllllllll}17 & \text { T } & \mathbf{M} & \mathbf{H} & \mathbf{L} & G & I & Q & N & \mathbf{M} & \mathbf{K} & \mathbf{M} & \mathbf{I} & \mathbf{Z} & \mathbf{H} & \text { Q } & \mathbf{I} & \mathbf{M} & \mathbf{U} & \mathbf{C} & \text { T } & \\ & 2 & 2 & 5 & 4 & 2 & 7 & 3 & 8 & 2 & 0 & 2 & 2 & 0 & 3 & 0 & 2 & 2 & 3 & 3 & 2 & 52\end{array}$
 $\begin{array}{lllllllllllllllllllll}0 & 8 & 7 & 2 & 3 & 0 & 4 & 8 & 8 & 2 & 8 & 0 & 7 & 7 & 8 & 0 & 8 & 2 & 4 & 0 & 86\end{array}$
$\begin{array}{lllllllllllllllllllll}19 & I & 0 & J & M & I & \mathbf{K} & \mathbf{I} & \mathbf{P} & 0 & Z & 0 & A & B & J & S & A & 0 & & \mathbb{K} & I \\ & 2 & 8 & 0 & 8 & 7 & 0 & 13 & 3 & 8 & 0 & 8 & 7 & 1 & 0 & 6 & 7 & 8 & 2 & 13 & 2\end{array}$
103

$\begin{array}{llllllllllllllllllllll}21 & A & Q & L & P & \mathbf{R} & \mathbf{M} & G & R & Q & B & \dot{Q} & \mathbf{O} & D & L & 0 & C & Q & \mathbf{I} & G & A & \\ & 7 & 0 & 4 & 3 & 0 & 2 & 2 & 8 & 0 & 1 & 0 & 3 & 4 & 4 & 3 & 3 & 0 & 2 & 2 & 7 & 55\end{array}$
$22 \quad \begin{array}{lllllllllllllllllllll}B & H & M & Q & L & M & H & S & R & C & R & D & \text { I } & \text { M } & \mathbb{V} & D & R & Z & H & B \\ 1 & 8 & 2 & 0 & 4 & 8 & 3 & 6 & 8 & 3 & 8 & 4 & 13 & 2 & 2 & 4 & 8 & 0 & 3 & 1\end{array}$

REF ID:A64561

- 45 -

Fig 19 (contanued)

$\begin{array}{lllllllllllllllllllllll}23 & C & S & N & R & M & 0 & I & T & S & D & S & \mathbb{E} & F & N & \mathbb{N} & \mathbb{E} & S & A & I & C & & \\ & 3 & 6 & 8 & 8 & 2 & 8 & 7 & 9 & 6 & 4 & 6 & 13 & 3 & 8 & 2 & 13 & 6 & 7 & 17 & 3 & & 129\end{array}$
24

Golumnil (continued)

REF ID:A64561

- 46 -

Fig. 19 (continued)

Column 2 (continued)

$\begin{array}{lllllllllllllllllllllll} & \pi & W & Y & M & W & \pi & V & D & P & B & Q & P & F & Z & N & W & I & W & B & K & I & \\ & 2 & 2 & 2 & 2 & 2 & 2 & 4 & 3 & 1 & 0 & 3 & 3 & 0 & 8 & 2 & 4 & 2 & 1 & Q & 7 & 50\end{array}$
$10 \quad \begin{array}{lllllllllllllllllllll}X & Z & N & X & X & \mathbb{T} & \mathbb{E} & Q & C & R & Q & G & A & 0 & X & M & X & C & I & J \\ 0 & 0 & 8 & 0 & 0 & 2 & 13 & 0 & 3 & 8 & 0 & 2 & 7 & 8 & 0 & 2 & 0 & 3 & 4 & 0\end{array}$
60
$\begin{array}{llllllllllllllllllll}\mathbf{Y} & A & 0 & \mathbf{Y} & \mathbf{Y} & \mathbf{X} & \mathrm{~F} & \mathbf{R} & \mathrm{D} & \mathbf{S} & \mathrm{R} & \mathbf{H} & \mathbf{B} & \mathbf{P} & \mathbf{Y} & \mathrm{N} & \mathbf{Y} & \mathrm{D} & \mathbf{M} & \mathbf{K} \\ \mathbf{2} & 7 & 8 & 2 & 2 & 0 & 3 & 8 & 4 & 6 & 8 & 3 & 1 & 3 & 2 & 8 & 2 & 4 & 2 & 0\end{array}$ 75
$\begin{array}{llllllllllllllllllll}Z & B & P & Z & Z & Y & G & S & \mathbf{E} & T & S & I & C & Q & Z & O & Z & \mathbb{E} & \mathrm{~N} & \mathbf{L}\end{array}$ $\begin{array}{lllllllllllllllllll}0 & 1 & 3 & 0 & 0 & 2 & 2 & 6 & 13 & 9 & 6 & 7 & 3 & 0 & 0 & 8 & 0 & 13 & 8\end{array}$ 85
$13 \begin{array}{lllllllllllllllllllll} & A & C & Q & A & A & Z & H & T & F & U & T & \text { J } & D & \text { R } & A & P & A & F & 0 & M \\ & 7 & 3 & 0 & 7 & 7 & 0 & 3 & 9 & 3 & 3 & 9 & 0 & 4 & 8 & 7 & 3 & 7 & 3 & 8 & 2\end{array}$ 93
$14 \begin{array}{lllllllllllllllllllll} & B & D & R & B & B & A & I & U & G & V & U & \text { E } & \text { E } & \text { S } & B & Q & B & G & P & N \\ & 1 & 4 & \text { Q } & 1 & 1 & 7 & 7 & 3 & 2 & 2 & 3 & 0 & 13 & 6 & 1 & 0 & 1 & 2 & 3 & 8\end{array}$ 73
 79
$16 \begin{array}{lllllllllllllllllllll} & D & F & \text { I } & D & D & C & K & W & I & X & W & M & G & U & D & S & D & I & R & P \\ & 4 & 3 & 9 & 4 & 4 & 3 & 0 & 2 & 7 & 0 & 2 & 2 & 2 & 3 & 4 & 6 & 4 & 7 & 8 & 3\end{array}$ 77
$17 \quad \mathbf{E} \quad \mathbf{G}$ $\begin{array}{lllllllllllllllll}13 & 2 & 3 & 13 & 13 & 4 & 4 & 0 & 0 & 2 & 0 & 8 & 3 & 2 & 13 & 9 & 13 \\ 0 & 6 & 0\end{array}$

108
$\begin{array}{llllllllllllllllllllll}18 & F & H & V & F & F & E & M & \mathbf{Y} & \mathbf{K} & \mathbf{Z} & \mathbf{Y} & 0 & \mathbf{I} & \mathbf{T} & \mathbf{F} & \mathbf{U} & \mathbf{F} & \mathbf{K} & \mathbf{T} & \mathbf{R} & \\ & 3 & 3 & 2 & 3 & 3 & 13 & 2 & 2 & 0 & 0 & 2 & 8 & 7 & 2 & 3 & 3 & 3 & 0 & 9 & 8 & 76\end{array}$
$\begin{array}{llllllllllllllllllllll}19 & G & I & W & G & G & F & N & \mathbf{Z} & \mathbf{I} & \mathbf{A} & \mathbf{Z} & \mathbf{P} & \mathbf{J} & \mathbf{X} & \mathbf{G} & \mathbf{V} & \mathbf{G} & \mathbf{L} & \mathbf{U} & \mathbf{S} & \\ & \mathbf{Z} & 7 & 2 & 2 & 2 & 3 & \mathbf{8} & 0 & 4 & 7 & 0 & 3 & 0 & 0 & 2 & 2 & 2 & 4 & 3 & 6 & \\ & & 59\end{array}$
20
 59

21

REF ID:A64561

$$
\begin{gathered}
-47- \\
\text { Fig } 19 \text { (continued) }
\end{gathered}
$$

d It will be noted that the frequency value of the $23 d$ generatrix for the first column of cipher letters $1 s$ the greatest value, that of the first generatrix for the second column is the greatest. In both cases these are the correct generatrices. Thus the selection of the correct generatrices in such cases has been reduced to a purely mathematical basis which is at times of much assistance in effecting a quick solution. Moreover, an understanding of the principles involved will be of considerable value in subsequent work.
25. Solution by the probable-word metnod - a Occasionally one may encounter a cryptogram which is so short that it contains no recurrences of even digraphs, and thus gives no indications of the number of alphabets involved If the sliding maxed component is known one may apply the method illustrated in Par. 15, assuming the presence of a probable word, and checking it against the text and the sliding components to establish a key, if the correspondents are using key vords
b For example, suppose that the oresence of the word ENEMY is assumed in the messege in Par. 23 b , wh. One proceeds to check it against an unknown key word, using the already reconstructed mixed component sliding against the normal and starting with the first letter of the cryptogram in this manner.

If SFDZR equals ENEMY, then the successive equivalents of A_{p} equal XENFH.

The sequence $X B N F W$ spells no intelligible word. Therefore one shifts the location of the assumed word ENEMY one letter forward $1 n$ the cipher text, and the test is made again, just as was explained on page 23.

REF ID:A64561

- 48 -

When the group AQRUU is tried one obteins as the key letters MIMUT, which, taken as a part of a word, suggests the word AZIMUTH. The method must yield solution when a correct word is assumed and correctly placed.

C The danger to cryptographic security resulting from the inclusion of cryotographed addresses end shgnatures in cryptographic messages is directly connected with the principles of solution by the probable-word method. To illustrate, reference is made to the message employed in Pars ly-22 It will be noted in Par 22 b that the message carried a signature (Treer, Col) and that the latter was enciphered Suppose that this were an authorized practice, and that every message could be assumed to conclude with a cryptographed signature The signature "TREシR COL" would at once afford a viry good basıs for the oulck solution of subsequent messages emanating from the some headquarters as did the first message, because presumably this same slgnature would appear in other mescages. It is for this reason that addresses and signatures must not be cryptographed, if they must be included they should be cryptographed in a totally different system or by a wholly different method, perhaps by meens of a special address \because nd signature code. It would be best, homever, to omit all addresses end signatures, and to let the call signs of the headquarters concerned elso convey these parts of the messoge, le, ving the distribution or delivery to the offices concerned a metter for locel action
26. Solution then the plain component is a maxed sequence, the cipher comoonent, the normel. - a This fells under Case B (2) outlined in Par 6 It is not the usuel method of employing a single mixed, component, but may be encountered occasionally in cipher devices.
b The preliminary steps, as regaras factoring to determine the length of tne period, ere the same as usurl. The messege is then transcribed into its periods. Frequency distributions ere tnen mede, as usual, and these are attecked by the orincibles of frequency and recurrence. An attempt is made to eoply the orinciples of direct symmetry of position, but this atteript will be futile, for the reason thet the plain component is in this case an unknorn mixed sequence (See Par. 15 d) Any attempt to find symetry in the secondary' alphebets based upon the normal sequence cin therefore disclose no symmetry because the symmetry which exists is based upon a wholly different sequence

C Eowever, if the principles of diract symmetry of position ere of no aveil in this case, there ere certrin other principles of symmetry which may be employed to grect edventige. To explein them on foturl examole will be used. Let it be assumed that it is known to the cryptanelyst thet the eneng is using the generel system under discussion, viz, a mıxed sequence variable from dey to dey $2 s$ used es plain component, the normel sequence is used as cipher component, and c repeating key, varlable froy message to messege, is used in the ordinery manner

The following messege has been intercepted: r
 VRZMO YAAMP DKTIJ STMIO IHMMIGQAMB
 UIIBK MDAXBXUDGI IADTK POATO DKXTX

 ESAEITMGUJ HQXPP•DKOUTXUQVBTVTBX IXAIB TCDIM IVAAA YSZII OVVVP IAGZI
 MQGUI JITIT TMAH-XRIBL OADLG NQGUY
 VXNMA PAAMI MXGHBESMLO KJCBZ TGGLO

d．A study of the recurrences and factoring their intervals discloses that five alphabets are invoived．Monoliteral bar frequency distributions are made and are as follows：，．

Alphabet 1．．

Alphabet 2.

Alphabet 3.

ェ 三赤至

неннц
ABCDETGEIJKIMMOPQRSTUVWXYZ
Alphabet 4.

ABCDETGHIJILMMOPQRSTUVWXIZ
Aíphabet 5.

日．Since the cipher component in this case is the normal alphabet fit follows that the five frequency distributions are based upon a sequence which 1s known．Therefore the five frequency distributions should manifest edirect gymetry of distribution of crests and troughs．By shifting the five distri－ blations relative to one another，all five can be matched as regards the posi－ tions of the crests and troughs，thus reducing the five distributions to a single equivalent monoalphabetic distribution．Nóte how this has been done in the case of the five illustrative distributions：

者： t
E -
Alphabet 5 ．

Fig．21．
f. The auperimposition of tho respoctive distributions enablos one ta converf the cipher lottors of the fivo alphabote into one alphabot. Suppoise it fip, decịdod to convert alphabota $2,3,4$, and 5 into alphabot 1.. It ís ' maroly pecessary to substitute for tho rospoctive lettors in tho four eiphabots thbese which atand abovo thom in Alphabot 1. For oxample, in Fig. $2 i_{1} \mathrm{~F}_{c}$ in, Alphanbot 2 is diroctly undor A_{c} in Alphabot 1 ; honco, if the suporimposi- ${ }^{c}$
 sary tip roplace overy X_{c} in the socond position by A_{c}. Again T_{c} in Alphabet 3 - Ac in Alphabet $1 ;$ therofore, in the cryptogram one roplacos overy T_{c} in the third position by A_{c}. The entire process gives the following convortod message:

QHVHTLUTXI JYNTPNGSHTEYUFHEUTGNVUGYX Y DHYY DNLUS SITKXYKTYN GTHYX UTHJAHXMND KTFYDNHSHCKTPXNKCIGN UOPNTNGHJKXXKSU GYDNHTYKLUSSITKXYHLLUGFGN LNTYJTXKPT NFMEQHVHTHTPNGSHTEBYDNVGNXXXHKTYDNG NAHXKTYKXVIYHMJNVGUU OYDHYYDNLUSKTYN GTKTXXKPHYNTYDNXNKOIGNUOPNTNGHJLDKH TPHTPXUSNUODKXPNTNGH JXBSK JKYHGEUKXN GZNGXXHKTY JNLUIVAUIJTDHZN MNNTK SVUXX KMJNITNNXXPNTNGHJLDHTPDXINTJKHTPDUY DNHFNFOUGSNGAHG JUGFUOSHTLDIGKH DHFOU GSNTHTHJJKHTLNAKYDYDNLTSSITKXY JNHFN GXDNA HXXIVVUXNFYUMNOKPDYKTPBXI LDHTH JJKHTLNYDNXNUMXNGZNGXFNLJHGNTUVNTNF IVHGNTGUIYNOGUSEUXLUAYUTUGYDHTELNTY GHJLDKTHB

The monoalphabetic frequency for this follows. Note that the frequency of exich letiter 18 the sum of the five frequencies in the corresponding columns of Fig. 21.

Fig. 2la.
g. The problem having been reauced to nonealphabetic terms, a trigraphac frequency distribution can now be made ard solution readily attained by simple principles. It yields the following:

JAPAN CONSULTED GE 현ANY TODAY ON REPORTS THAT THE COMMNIST INTER-
NATIONAL YAS BBHIND THE AMAZING SEIZURTE OF GENEHALISSINO CHIANG KAI SHEK IN CHINA. TOKYO ACTED UNDER THE ANTICOMUNIST ACCORD REGBHTLY SIGNED BY JAPAN and grimany. ing paiss Said thyri vas Indisfutabla proof that the comintern
 OBSERVELS ShTL THE JOUP GOULD HAVE BEEN TAPOSSIBLE UNLE: GENERM GPANG HSUEN LIANG HOTHEf LiD FORNER MAR LORD OF MANCHURIA HAD FJRED AN ALLIANGE
 THESE OBSERVERS DECL LRED OFENED UP AI RED ROUTE FROH HCSOTH TO NORTH AND CENTRAL CHINA.
h. The reconstruction of the plain comjonent is nove very simple matter. It is found to be as fillows

HYD7aULI SBAFGJKHNOPQSTVWXZ

Note also, in Fig, 3l, the keyw.ra for the insage, (being in the columns headod by he letter H

1. The solution of subsequent messagos mith different keys can now be reached directly, by a simple modification r_{i} the principles explained in Paragraph 18. This modifucation consists in using for the completion the maxed plain component (now known) inatead of tho normal alphabot, after the cipher letters heve boen convorted into their plain component equivalents. Let the studont confirm this by an exporimen ,
2. The probable-word method of solution discussed under Paragraph 20 is also applicable here, in case of vory short cryptograms. This mothod presupposes of course, possession of the mixed component; the procedure 18 ossontially the same as that in Paragraph 20. In the oxample discussod in the present paragraph, tho lottor A on the plain component was successfully set against tho key lottors HPAVY; but thas is not tho only possible proceduro.
k. Tho student should go ovor carefully tho principlo of "convorsion into monoalphabetic torms" oxpiainod in subparagraph f abcvo until he thoroughly understands it. Lator on he will oncounter casos in which this principlo is of very groat assistance in tho cryptanalygis of more complex problams.

SECTION VI.

27. Further cases to be considered. - a. Thus far Cases B (1) and (2), mentioned in Paragraph 3 have been treated. There remains Case B (3) to be studied. This cese has been further subdivided as follows

Case B (3). Both components are mixed sequences.
(a) Components are identical mixed sequences.
(1) Sequences proceed in the samp direction. (The secondary alphabets are mixed alphabeta).
(2) Sequences proceed in opposite directions.
(The' secondery alphabets are reciprocal mixad alphabets).
(b) Components are different mixed sequences. (The secondary alphabets are mixed alphabets).
b. The first of the foregoing subcases will nov be examined.
28. Identical, primary mixed components proceeding in the same direction. - a. It is often the case that the mixed components are derived from an easily remembered word or phrase, so that they can be reproduced at any time from memory. Thus; for example, given the koy word QUESTIONaBLY, the following mixed sequence is deriveds

QUeSTIONABLYCDFGHJKMPRVWXZ

b. By using this sequence as both plain and cipher component, that is, sliding this sequence against itself, a series of 26 secondary mixed alphebets may be produced. For example; by setting the two sliding strips against each other in the two positions shown below, the cipher alphebets labeled (1) and (2) given by the two settings are seen to be different.

REF ID:A64561

Key letter $=A\left(1 . c ., \gamma_{p}\right.$ Fich $_{c}$).
Rlaln componorit.
\downarrow
QUESTICNABLYCJFGHJKy YRVVXZ?̧WSTIONABLYCDFGHJKNIPRVNXZ QUESTIONABLYCDFGHJKIIPRVWXZ

Ciphor componont.
Secondary alphevet:

> Slean - BCDFFG:IIJKLINOPQRSTUVFXYZ
(1) Cipher - HJPRLVGXDZQKUGFEASYCBTIOAN

Key letter $=B\left(1,0 ., Q_{p}=B_{c}\right)$.
Plain conponent.
QUESTION.ABLYCLFGHJKMPRVWXZQIJESTIONABLYCDFGHJKIPRVWXZ ZJESTIONABLYGDFGHJKMPRVVXZ

Ciphor component.

Secondary, alphabet:
Plann - ABCDETGHIJKL3NOP2PSTUViXYZ
(2) Ciphor - JKNVYJXZFQUUIDHGSBTCDIICNPA
c. In enclphering a messago by such sliding strips, a koy word is used to designate the particular positions in which the strips are tr be sot, the samp as was the case ln previous examples of the use of sliding components. The method of designating the positions is, however, slightly different, the roasons for which will appear in the succoeding paragraph. In the mothods horetofore given, tho key lottor, as locatod on the elpher component, was set opposito A, as located on tho plain componont; in othor words, if a was the key lottor, then the two sliling strips were sot so that ap $=A$. In this casc, however, where identical mixed sliding components are usod, tho koy lettor is sot opposito the first lettor of the soquonco upon which the primary components aro based; that 1s, If A 1 s tho key lotter, then tho sliding strips are set so thet $Q_{p}=A_{c}$ in the caso $n f$ the mixod compnents shown above. Hence, in the first of the two examplos above, the koy lotter for the first example being A, then A_{c} is sot oppesito Q_{p}; in the socnnd of these examples, the key lettor belng B, then B_{c} is set rpposite Q_{p-}
d．Vory froquently a quadricular or square table is employed by the correspondents，instead of sliding strips，but the results are the same； The square table based upon the word 叉UESTIONABLY is shown in Table 6．It will be noted that the table does nothing more than set forth the successive positions of the two primary sliding components，and the trp line of the table is the plain component，the successive horizontel lines bolow it，the cipher component in its＇various juxtapositions．The usual mothod of em－ ploying such a table is to take as the capher equivalont if a plain－text letter that letter which lies at the intersection of the vertical column headod by the plain－text letter and the horizontal rew bogun by tho key lotter．For example，the cipher oquivalent of \mathbb{E}_{p} with key lettor T is the lottor 0_{c} or $E_{p}\left(T_{k}\right)={ }^{0}$ ．The method given in paragraph b，for dotormin－ ing the elpher equivalents by means of tho two sliding straps yields the same results as does the square table．

TABLE 6.
QUESTIONABLYCDFGHJKMPRVWXZ
UESTIONABLYCDFGHJKMPRVWXZQ
玉STIONABLYCDFGHJKWPRVWXZQU
STIONABLYCDFGHJKMPRVWXZQUE
TIONABLYGDFGHJKMPRVWXZQUES
I ONABLYCDFGHJKMPRVWXZQUEST
ONABLYCDFGHJKMPRVWXZQUESTI
NABLYCDFGHJKMPRVWXZQUESTIO
ABLYCDFGHJKMPRVWXZQUESTION
BLYCDFGHJKMPRVWXZQUESTIONA
LYCDFGHJKAPRVWXZQUESTIONAB
YCDFGHJKMPRVWXZQUESTIONABL
CDFGHJKMPRVWXZ QUESTIONABLY
D FGHJKMPRVWXZQUESTICNABLYC
FGHJKMPRVサXZQD工STIONABLYCD
GHJKMPRVWXZQUESTIONABLYGDF
リJKMPRVWXZQए゙』STIONABLYCDFG
JKMPRVWXZ M UESTIONABLYCDFGH
MPRVWXZQUESTIONABLYCDFGHJK
PRYWXZQUESTIONABLYCDFGHJKM
RVWX2QUTSTIONABLYGDFGHJKMP
VサXZQUESTIのNABLYCDFGHJKMPR
TXZQUESTIONABLYCDPGHJKMPRV
X2QUEETIONABLYCDFGHJKMPRVW
ZQUESTIONABLYCDFGHJKMPRVWX
29. Cryptographing and decryptographing by identical, primary mixed compopipnts. - There is nothing of special interest to be noted in connection with the use either of identical mixed components of an equivalent quadricular table such as that shom in Table 6, in enciphering or deciphering a message. The basic principles are the same as in the case of the sliding of one mixed component against tha normal changeable keywords oi varying lengtha. The components may be changed at will and so on. All this has beon demonstrated adequately enough in Special Teixt No. 165, Elementary Military Cryptography.
30. Principles of solution. - g. Basically the principles of solution in the case of a cryptogram oncipherad by two identical mixed slicing compononts are the same as in the preceding, case. Primary recourso is had to the principles of frequency and ropotition aŕ single lottors, digraphs, trigraphs, and polygraphs. Oncs an entering wodge has been forced into tho problom, the subsequent steps may consist merely in continuing aleng the samo lines as befores building up tho solution bit by bit.
b. Doutloss the quostion has' alroady arison in the student's mind as to whother any principles of symatry of position can be usod to assist in tho solution and in the roconstruction of the ciphor alphabots in cases of this kind undor considoration. This phase of. tho subjoct vill bo takon up in the noxt soction and will bo treatod in a somownt detrilod manner, becauso the thoory and principlas involvod aro of yery wide applicntion in cryptanalytics.

SICTION VII.

THEORY OF INDIRECT SYMUGTRY DF POSITION IN SECONDARY ALYHABETS.

Roconatruction of primary compononte from soconder:' alphabots
31. Reconstruction of primary comporionts from sacondary alphabets.
g. Noto tho two socondary alphabets (1) and (2) givon in paragraph 27b. Extornally thoy show no rosomblanco or symmotry dospite the fact that they were producod from the same primary compononts. Novirtholoss, whon tho mattor is studiod with caro, a symatry of position is discovercblo. Becauso it is n hiddon or latont phonomanon, it may bo tormod latont symanatry of pusition. However, in' previous toxts the phonomonon has boon dosignntod as an indiract symmotry of pcaition and this torminology has grown into usago so that a chango is porhaps now inadvisablo. Indiract symmotry of position is a vory sintorosting and oxcoodingly useful phonomenon in cryptanalytics.
b. Consider the folloping secondary alphabet (the one labeled (2) in paragraph 27b):

Hain - ABCJEFGHIJKLMNOPQRSTUVGXYZ
 Cipher - JKRVYTXZFQUHEHGSBTCDLIONPA

c. Assuming it to be known that this is a secondary alphabet produced by two primary ideusical mixed components, it is dosired to reconstruct the latter. Construct a chain of alternate $\theta_{p}-\theta_{c}-\theta_{p}$ values, beginning at any point, and continuing until the chein has beon complated. Thus, for example, boginning with $A_{p}=J_{c}, J_{p}=Q_{c} ; Q_{p}=B_{c}$, and dropping out the letters cogmon to successive pairs; there results the sequence A J Q B . . . By completing the chain the following sequence of letters is established:

AJQBKULMEYPSCRTDVIFWOGXNHZ

d. This sequonce consists of 26 letters, and when slid against itself will produce exactly tho same secondary alphabets as do the primary components based upon the word QUESTIONABLY. To demonstrata that this is the case, compare the secondary alphabets given by the two settings of the externally different components shown below:

> Plain component.

ZURSTIONABLYCDFGHJKAPRVYXZQUESTIONABLYCDFGHJKEMPRVYXZ叉̧UESTIONABLYCDFGHJKMPRVVXZ.

Cipher $\uparrow_{\text {component }}$.
Secondary alphabet:

> Plain - ABC.JETGHIJKLLNNOPQRSTUVYKYYZ
> (1) Cipher - JKRVYYXZFQUNEHGSETCDLIONPA

> Plain component.
> AJQBKULMEYPSGRTDVIGTHOGXNHZAJRBKULZATYPSCRTDVEIFHOGXAHZ AJQBKULMEYPSCRTDVIFHOGXNHZ Cipher component.

Secondary alphabets

REF ID:A64561

- 60 -
Q. Since the sequence A J ఇ B K . . . gives exactly the same equivalents in the secondary alphabets as the sequence QUE ST... gives, it is termed an equivalent primary component. If the real or original primary component is a key-word mixed sequence, it 18 hidden or latent within the equivalent primary sequence; it can be made patent by decimation of the equivalent primar; component. Find three letters in the equivalent primary component such as are likely to have formed an unbroken sequence in the original primary component, and see if the interval between the first and second 15 the same as that between the second and third. Such a case is piesented by the lecters A, X, and 2 in the equivalent primary component above; the distance or interval between them is two lattars. Continuing the chain by adding lotters two intorvals removea, the latont original primary component 2 s mado patent.

' Y X Z QUESTIONABLYCDFGHJKKPRV

f. It is possible to perform the steps given in \underline{g} and $\underline{\theta}$ in a combined single operation when it is suspected that the original primary component 18 a key-word mixod sequence. Starting with any pair of lotters (in the caphor component of the secondary alphabet) likely to be sequent in the key-word mixed sequance, suc' as JK_{c} in the secondary alphabot labolad (2), the followng chain of digraphs may be set up. Thus, J, K,in the plain component stand over Q, U, rospectivoly, in the expher component; Q, U, in the plain component stand over B, L, rospoctivoly, in tho cipher component; and so on. Connocting tho pairs in a sories, tho followng results are obtannod:

$$
\begin{aligned}
& J K-Q U-B L-K M-U E-L Y-M P-E S-Y C-P R-S T-C D-R V- \\
& T I-D F-V V-I O-F G-W X-O N-G H-X Z-N A-H J-Z Q-A B-
\end{aligned}
$$

These may now be united by means of their common letters:
JK - KM - MP - YR - RV - etc. = JKMPRVWXZQUESTIONABLYCDFGH

The original primary component is thus completely reconstructed.
g. Not all of the 26 secondary alphabets of the series yielded by two sliding pramary components may be usea to develop a complete equivalent primary component. If examination be made, it will be found that only 13 of these secondary alphabets will yield complete equivalent primary components when the method of reconstruction shown in subparagraph \subseteq above is followed. For example, the followng secondary alphabet, which is also derived from the primary components based upon the word QUESTIONABLY will not yield a complete chain of 26 plain text-cipher-plain text equivalents:

Ylain - ABCDRFGHIJKLINOPQRSTUVIXYZ Cipher - CDHJOKMPBRVFTYLXTZNAIQUEGS
Equivalent primary component:
AGHPXEOLFKVqTAGH. . (The ACH sequence begins again).

REF ID:A64561

- 61 -
h. It 1 s seen that only 13 letters of t're chain have been eatablished before the sequence begins to repeat itself. It 18 evident that exactily onehalf of the chain has been eatablished. The other half may be established by beginning with a letter not in the first half. Thus:

BDJRZSNYGMWUIBDJ...(The BDJ sequence begins again).

1. It is not necessary 抲 0 distribute the letters of each half-sequence within 26 spaces, to correspond whth their placements in a complete alphabot. This can only be done by allowing between the letters of one of the halfsequences a constant odd number of spaces. Distributions are therefore made upon the basis of $3,5,7,9$, . . . spaces. Select that distribution which most nearly coincides with the distribution to be expected in a key-word component. Thus, for example, whth the first half-sequence the distribution selected is the one made by leaving three spaces between ithe letters; it is as follows:

2. Now interpolate, by the same constant interval (three. in this case), the letters of the other half-sequence. Noting that the group $F-H$ appears in the foregoing distribution, it is apparent that G of the secand halfsequence should be inserted between F and H. The letter which immediately follows G in the second half-sequence, $v i z, M$, is next inserted in the position three spaces to the right of G, and so on, until the interpolation has been completed. This yields the oraginal primary component, which is as follows:

ABLYCDFGHJKMPRVWXZQUESTION

k. Another method of handling cases such as the foregoing is indicated in subparagraph f. By extending the prineiples set forth in that subparagraph, one may reconstruct the followng chain of 13 pairs from the secondary alphabet given in subparagraph g!

$$
C D-H J-P R-X Z-E S-O N-L Y-F G-X M-W W-Q U-T I-A B-C D
$$

Now find, in the foregoing chain, two pairs likely to be sequent, for example HJ and KM and count the interval between them in the chain. It is 7 (counting by pairs). If this decimation interval is now applied to the cnain of pairs, the following is established:

HJKMPRVWXZQUESTIONABLYABCDFG

1. The reason why a complete chain of 26 letters cannot be constructed from the secondary alphabet given under subparagraph g is that it represents a case in which two primary components of 26 letters were slid an even number of intervals apart. There are in all 12 such cases, none of whach will admit of the construction of a complete chain of 26 letters. In addition, there $1 s$ one case wherean, dispite the fact that the primary components are an odd number of intervals apart, the secondary alphabet cannot be made to yield a complete chain of 26 letters for an equivalent pramary component. This is the case in which the displacement is 13 intervals. Note the following secondary alphabet based upon the primary components shown in aubparagraph d:

QUZSTIONABLYABCDFGHJKMPRVWXZ CDFGHJKMPRVWXZQUESTIONABLYAB

Plain a ABCDEFGHIJKLMNOPQRSTUVWXYZ Cipher- \quad RVZQGUESKTIWOPMNDAHJFBLYXC
m. If an attempt 18 made to construct a chain of letters from this secondary alphabet alone, no progress can be made because the alphabet is completely reciprocal. However, the cryptanalyst need not at all be baffled by this case. The attack wall follow along the lines shown below in subparagraphs \underline{n} and o.
n. If the original primary component $1 s$ a key-word mixed sequence, the cryptanalyst may reconstruct it by attempting to "dovetanl" the 13 reciprocal pairs ($A R, B V, C Z, D Q, E G, F U, H S, I K, J T, L W, M O, N P$, and $X Y$) into one sequence. The members of these pairs are all 13 intervals apart. Thus:

Write out the series of numbers from 1 to 26 and insert as many pairs into position as possible, being guided by considerations of probable sequence in the key-word mixed sequence. Thus:

12345678910111213141516
ABCD......... $R \mathrm{~V}$ Z Q
; 1
It begins to look as though the key-word commences with the letter Q, in which case 2t shuuld be followed by U. This means that the next pair to be inserted is FU. Thus:

1234567891011121314151617
ABCDF........ R V Z Q U.

The sequence A B C D F means that E is in the key. Perhaps the sequence is ABCDFGH. Upon triad, using the pars'EG and HS, the following placements are obtained:

ABCDFGH...... \quad. V Z C U E
This suggests the word QUEiST or QUESTION. The pair JT is added:

$$
\begin{aligned}
& 123456789101112131415161718-1920 \text { - }
\end{aligned}
$$

The sequence $G H J$ suggests $G H J K$, which places an I after T. Enough of the process has been shown to make the steps clear.
․ Another method of circumventing the cafficulties introduced by the l4th secondary alphabet (displacement interval, 13) is to use it in conjunction with another secondary alphabet which is produced by an oveninterval displacement. For example, suppose the following two secondary alphabets are available.

Q-ABCDEFGHIJKL用NOPRSTUVWXYZ
1-RYZQGUESKTIWOPMNDAHJFBLYXC
$2-X Z E S K T I C R N A Q B W V L H Y \mathbb{O}$ OCDFUG
Fig. 23.

The first of these secondaries is the 13 Interval secondary; the spcond 1 s one of the even-interval secondaries, from which only half-chain sequences can be constructed. But if the construction be based upon the t wo sequences, 1 and 2 in the foregoing diagram, the followang $1 s$ obtained:

RXUTNLDHMVZEIAYFJPWQSOBCGK
This is a complete equivalent primary component. The original keyword mixed component can be recovered from it by decimination based upon the 9th interval:

RVWXZQUESTIONABLYCD.FGHJKMP

P. (1) Then the primary components are identical maxed sequences proceeding in opposite directions, all the secondary alphabets will be reciprocal alphabets. Reconstruction of the primary component can be accomplished by the procedure indicated under subparagraph o above. Note the following three reclprocal secondary alphabets:

O-ABCDEFGHIJKLKNOPQRSTUVWXYZ
1-PMHGQFDCHYLKBRVAENZXUOITJS
2- VVMKSJHGQFDRCXZYILEUTBANPO
3-TSSZLXWVNRPEMIOKCJBAYHGFUD
Fig. 24.
(2) Using lines 1 and 2 the following chain can be constructed (equivalent primary component):

P母QSOBCGKRXUTNLDHMVZEIATFJ
Or, using lines 2 and 3:
TTYYKODPUAGVSLJXICMQNFREBH
The original key-word mixed primary component (based on the word QUESTIONABLY) can be recovered from elther of the two foregoing equivalent primary comporients. But if lines 1 and 3 are used, only half-chains can be constructed:

PTFXAKECVOHQL and MSDWNUYRIGZB

$$
\text { - } 65 \text { - }
$$

This is because 1 and 3 are both odd-interval secondary alphabets, whereas 22 s an even-1nterval secondary. It may be added that odd-1nterval secondarias are characterized by having two cases in which $\theta_{p}=\theta_{c}{ }^{-}$ (Note that in secondary number 1 above, $F_{p}=F_{c}$ and $U_{p}=U_{q}{ }^{i}$ in secondary number 3 above, $M_{p}=M_{c}$ and $\theta_{p}=\theta_{c}$): This characteristic will enable the cryptanalyst to select at once the proper two secondaries to wort with in case several are available; one should show two cases where $\theta_{p}=\theta_{c}$; the other should show none.
q. (1) When the primary components are diffeient m=xed secuences, their reconstruction from secondary capher alphabets follows alcng the same lines as set forth under b to i inclusive, above, with the exception that the selection of letters for building up the chain of equivalents for the primary cipher component is restricted to those below the zero line. Having reconstructed the primary cipher component, the plain component can be readily reconstructed. Thas will become clear if the student wall study the following example.

Fig. 25.
(2) Using only lines 1 and 2 , the following chain 18 constructed:

TZPGLIQRHYOUVJCNEWKDASXMFB

This 15 an equivalent primary cipher component. By finding the values of the successive letters of this chain in terms of the plain component of the first secondary alphabet (the zero line), the following is obtaineds

> TZPGLI RRHYOUVJCNEWKDASXMFR
> ASPTFGuUVJ2EBWKNRLXCCIMYQD

The sequence AS PT... is an equivalent primary plain component. The original key-word mixed components may be recovered fron each of the equivalent primary component ${ }^{4}$. That for the primary plain component is based upon the key. FUBLISHERS MAGAZINE; that for the primary cipher component is based upon the key QUESTIONABLY.
(3) Another method of accomplishing the process andicated above can be illustrated graphically by the following two chains, based upon the two secondary alphabets set forth in subparagraph g (1):

Cole ${ }_{\text {c }}$	Col. 2.	
$A(\phi-1)$	$\rightarrow T(1-1) ;$	$T(2-4) \rightarrow D(\phi-4) ;$
$D(\phi-4)$	$\rightarrow B(1-4) ;$	$\mathrm{B}(2-17) \rightarrow \mathrm{Q}(\phi-17) ;$
$Q(\phi-17)$	$\rightarrow \mathrm{F}(1-17)$;	$F(2-25) \rightarrow Y(\phi-25) ;$
$\mathrm{Y}(\phi-25)$	M(1-25) ;	$\underline{M}(2-9) \rightarrow I(\phi-9) ;$
$I(\phi-9)$	$\rightarrow \mathrm{X}(1-9) ;$	$X(2-13) \rightarrow M(\phi-13) ;$
$M(\phi-13)$	$\rightarrow \mathrm{S}(1-13) ;$	$s(2-3) \rightarrow c(\phi-3) ;$
etc.	etc.	

Fig. 26.
(4) By joining the letters in Column 1, the following chain is obtained: ADQYIM, etc. If this be examined, it will be found to be an equivalent primary of the sequence based upon PUBLISHERS mAGAZINE. By joining the letters in Column 2, the followng chain $1 s$ obtained: TBFMXS. This is an equivalent primary of the sequence based upon Q UESTIONABLY.

SECTION VIII.
APPLICATION OF PRINCIPLRS OF INDIRECT SYMAETRY OF POSITION.
Par.
Applying the principles to a specific example. 32
The cryptogram employed in the exposition. 33
Fundamental theory. 34
Application of principles 35
General remarks. 36
32. Applying the principles to a specific example. - a. The preceding section, whth the many details covered, now forms a sufficient base for proceeding with an exposition of how the principles of indirect symmetry of position can be applied very early in the solution of a polyalphabetic substitution clyher in which sliding primary components were employed to produce the secondary chpher alphabets for the enciphering of the cryptogram.
b. The cass described below will serve $n=\frac{1}{\text { b }}$ onis to exp ain the principles of the methed of zpplying these principles but whll ar the same time show how the solutior of a single, rather difficult, polyalphabetic substatution cipher can ve rereatly facilitated by applying those principles. It $1 s$ realizod, of courso, that tho cryptogram could bo solvod by t.as rasual methods of froquency and long, patient experimentation. Howevor, the mothod to be describad was actually appliod and very materially reduced the amount of time and labor that would otherwise have been required for solution.
33. The cryptogram employed in the exposition. - Q. The problem that will be used in thas exposition involves an actual cryptogram submitted for solution in connection with a cipher device having two concentric disks upon which the same random mixed alphabet appears, both alphabets progressing in the same direction. This was obtained from a study of the descriptive circular accompanying the cryptogram. By the usual process of factoring, it was determined that the cryptogram involved 10 alphabets. The message as arranged according to its period $2 s$ shown in Figure 27, in which all repetitions of two or more letters are indicated.
b. The trigraphic frequence distributions are given in Figure 28. It wall be seen that on account of the brevity of the message, considering the number of alphabets involved, the frequency distributions do not yield many clues. By a very careful study of the repetitions, tentative individual determinations of values of eipher letters, as illustrated in Figures 29, 30, 31, and 32, were made. These are given in sequence and in detail in order to show that there is nothing artificial or arbitrary in the preliminary stages of analysis here set forth.

REF ID：A64561

－ 68 －
THE CRYYTOGRAM
（Repetitions underlined）

	1234567890		1234567890
A	WFUPCFOCJY	x	GHXEKOQPSE
R	GBZDPFBUU0	Y	GKBWTLFDUZ
C	GRFTZ\｜QMAV	Z	OCDHWMZTUZ
D	KZUGDYFTR圌	A A	KLBPCJOTXE
E	GJXNLWYUUX	B B	HSPUPNMDLM
F	1KWEPQ20KZ	C C	G $\times K N D V \underline{B L S E}$
G	PRXDWEZICW	D D	GSUGDPDTHX
H	GKOHOLOПVM	EE	BKDZFMTGQJ
1	GOXSNZHASE	F F	LFUYDTZVHE
\checkmark	BBJ｜P甘FJHD	$G G$	Z GWNKXJTRN
K	WCBZEXATXZ	H H	YTXCOPMVLW
L	JCQRAFVHLH	11	BGEWWOQRGN
4	SRAEWIALMAE	$J J$	HHVLAOGVAV
N	GSXEROZJSE	K K	JRWUO「TNVI2
0	GVGWEJMKGH	LL	BKKUSOZRSW
p	RCVUPNBLCW	M M M	YUXOPPYOXL
0		PIN	
R	BZZCKUOIKE	00	$J J U G D W Q R V M$
S	CFRSCVXCHE	P P	UKWPEFXENF
T	$\underline{Z T Z S O M X W C M}$	QQ	CCUGDWPEUH
U	RKUHEQEDGX	R K	YBWEWVMDYU
v	FKVHPJJK $\mathrm{J}^{\mathbf{Y}}$	S S	R ZX
w	$Y Q D P C J X L L$		

FIGURE 28.
Trigraphic Frequency Distributions.
I.

II.

III.

REF ID:A64561

- 70 -

FIGURT 28 (Cont).

IV.

V.

VI.

VII.

VIII.

$$
I X .
$$

X.

$\stackrel{1}{G}_{c}=E_{p} ; \stackrel{2}{K}_{K_{c}}=E_{p} ; \stackrel{3}{X}_{c}=E_{p} ;$ and $\stackrel{4}{D}_{c}=E_{p}$, from frequency considerations.

	1234567890		1234567890
A	$W \frac{F U}{T} \frac{P C}{T H} F O C U Y$	X	$\underset{\mathbb{E}}{\mathrm{G}} \mathrm{H} \frac{X E H O Q}{E} \frac{S E}{T H}$
B	$G B \angle D P F B \underline{O} O$	Y	$\frac{\bar{G} K}{E} K \text { B T LFUUZ }$
C	GRFTZMUMAV	Z	$0 \mathrm{CDH} \underline{4} \mathrm{MZTUZ}$
[$\frac{E}{K} Z \underset{T H E}{U G D} Y F T R W$	A A	
E	$\operatorname{G}_{E}^{G} J X N L W Y \cup U X$	B B	HSPOPNMOLM
F	$1 K W E P Q Z 0 K Z$	C C	$\frac{G}{E} \times K W D \vee B L \frac{B E}{T H}$
G	PR XDWLZICN	D D	$\frac{G S}{E} \frac{U G D P O T H X}{T H E}$
H	$\frac{G K}{E} \mathrm{E} \text { HOLODVM }$	E E	$\underset{E}{B K} \mathrm{~B}_{\mathrm{E}}$
1	$\frac{G}{E} 0 \times S N Z H A \frac{S E}{T H}$	F F	
J	BBJIPGFJHD	G G	Z GWNKXJTBN
K	QCBZEXQTXZ	HH	$\underline{Y} T \underset{E}{X} \underset{E}{E} P M V L W$
L	JCORGFVMLH	11	BGBWWOQRGV
M	SROEWMLNA E	J J	HHVLAOQVAV
N	GSXERUZJSE	K K	JQWUOTTNVQ
0		L L	$\frac{B K}{E} \frac{\times U S O Z R S}{T}$
P	KCVOPNBLCW	H m	$\underline{Y} U X \cup P P P Y O X Z$
Q		$\mathrm{N} N$	HOZUWMXCGO
R	BZZCKWOIKF	110	$J J U G D W Q R V M$
S	$\underset{H}{C F B S C V C H Q}$	PP	$\text { UK } \underset{E}{T} \underset{T}{T} \underset{T}{P} \underset{E}{E} F \times E N \underset{F}{F}$
T	$\underline{Z} T Z S{\underset{E}{E}}_{D}^{M X W C M}$	40	$\text { CC } \frac{U G D W P E U H}{T E E}$
U	RKUHEQEDGX	R R	$Y B W E W V M \cap Y J$
V	FKVHPJJKJY	SS	$\begin{array}{r} \text { R Z X } \\ \text { E } \end{array}$
w	$Y \geqslant D \frac{P C J}{T H E L L L}$		

REF ID $\dot{r}_{3} A 64561$

ADDITIONAL VALJNES FROM ASSUNPTIONS（I）
Refer to line DD in Figure $29{ }_{3}{ }_{9} \mathrm{~S}_{\mathrm{c}}$ assumed to be N_{p} ．
Refer to line M in figure $29 ; A_{c}$ assumed to be W_{p} ．
91012345
Then in lines C－D，A VKZUGD is assumed to be NTTH THE．

	1234557890
A	WFUPCFOCUY
13	GBZOPFBUUO
C	$G_{E} R \text { FTZAQMAV } \frac{A}{I}$
D	KZUGOYFTBW THTHE
E	$\frac{G J X N L W Y O U X}{E}$
F	1 KWEPQ CO
G	$P R \frac{K}{E} \mathbb{X} D L Z I C W$
H	$\frac{G K}{E E} \text { OHOLODV+1 }$
1	$\frac{G}{E} 0 \times S N Z H A S E$
J	
K	リCBZEXQTXZ
L	JCQR日FVMLH
M	Sम日EWMLNAE
iv	
0	GVAWEJMKGH
P	
	ROVOPNLCW
${ }^{1}$	LQZAAAMDCH
H	HZZZCHOIKE
s	气FBSCVXCH日
T	ZTZSDMXWCH
u	RKUHEQEDGX
v	$F \underset{\mathcal{Z}}{K} \vee+P_{\mathbb{Z}}^{J} J K \underline{J Y}$
W	YQD PRCJXLLL

	1234567490
x	G HXERO日PSE
	E E－TH
Y	GK EWTLFDUZ
	E
z	OCDHWMZTUZ
A A	KLBPCJOTXE
	$T{ }^{T}$ THE
B B	HSPURN世DLM
C C	GXKWDVBLSE
	E E E T ${ }^{\text {c }}$
D D	GSNGDPQTHX
EE	ENTHERMTGQU
	E
F F	LEUYDTZVH日
G G	
H	YTXCUFMVLW
	I
11	BGBWWOGRGN
J J	HHVLAIGVAV
K K	JいWUいTTIVa
L．	$\frac{B K}{E} \frac{X U S O Z K S N}{E}$
M 4 m	YUXUPPYOXZ
HN	HOZONTAXCGO
00	JJUGOw QRV曲
	THE
PP	UKWPEFXEME
Q 0	C CUGDWPEUH
	THE
RR	
SS	R $\mathrm{Z} \times$
	HE

Fig．30．

REF74 ID: A64561

ADDITIONAL VALUES FROM ASSUMPTIONS (II)
12345678910
Refer to Figure 30, line A; W FUPCFOCJY; assume to be BUT THOUGH.

- - TTH—————

3456
Refer to Figure 30, lines N and X, where repetition XERO occurs; assume EACH E---

1234567890
A.

B
C
HFUPCFOCJY
X

1234567890
GHXEHOQPSE
E EACH
GKBWTLFDUZ
EEE
$O C D H W \angle T U Z$
KLBPCJnTXE
 N
$\frac{G}{E} \times K W D V B L \frac{S E}{T H}$
 LEUYDTZVHQ ZGWNKXJTRM

YTXCDPMVLW E E
Bra BWWOQRGN
HHVLAUQV $\frac{A V}{W I}$
JaWUUTTNVg

$\underline{Y} U K \underline{U} P Y Y X Z$
$\mathrm{HOZO} \underset{G}{\mathrm{WH}} \underset{\mathrm{X}}{\mathrm{X}} \mathrm{G}$

R Z X

REF ID RA64561

additional values from assumptions（ili）．
OPN－assume ING from repetition and frequency．
901
HQZ－assume ING from repetition and frequency．

A	$\frac{1234567890}{\text { WUCOFOCUY }}$	x	$\frac{1234567890}{G H X E R O Q P S E}$
	BUTTHOUGH		E EACH TH
B	GHZDPFB0	Y	GKBM「LFDUZ
c	${ }_{\text {ERFT }}^{\text {E }}$ NGQMA	2	${ }_{\text {E }}^{\text {E E E OHWMZTUZ }}$
	E		
0	KZUGDYFTR	A A	KLBPCUOTXE
E	THJTHNLWYOUX	B B	
	${ }^{5}$ E		$N \overline{\mathrm{~T}} \mathrm{NG}$
F	IKWEPGZOKZ	C C	
G	PR ${ }_{\text {E }}^{\text {R }}$ ANWLZICW	D D	ESUG唇POTH ${ }^{\text {H }}$
			$\overline{\text { E N }}$ T E UTI
H	$\frac{G K}{E} E H O L O D V I I$	E E	$\frac{B K D 7 F M T G B J}{E}$
1	GoXSNZHASE	F F	LFUYOTZVH日
\checkmark		G G	
	N I		
K	QCBZEXQTXZ	H H	$\underset{E}{Y} \underset{E}{ } \operatorname{XXC}_{E} \underset{E}{D P M V L W}$
L	$J C G R Q F V M L H$	11	BGBWW $\underset{H}{O A R G N}$
M	SRQEWMLNAE	$J J$	HHVLA日QVAV
N	GSXEROZUSE	K K	
	ENEACHMTH		\％${ }^{\text {c }}$
0		L L	$\frac{B K}{E} \frac{X U S}{E} S \underset{H}{O Z R S}$
P	RCVOPNRLCW	M M	$\underline{Y} \cup X \underline{O P P Y O X Z}$
Q	LQノA ${ }^{\text {T }}$ NGAMDCH	N N	HOZO ${ }^{\text {WMMXCSOW}}$
R	BZZCKEOIKF	00	JJUGDW日GEVM
			UK ${ }_{\text {T }}^{\text {W }}$ P ${ }^{\text {P }}$ EFXENF
S		PP	
T	ZTZSDMXWCM	Q 0	CCUFDWPEUH
			THEP
u	RKUHEQEDGX	R R	YBLEWVMDYJ
V		9 S	R $Z^{\text {X }}{ }^{\text {A }}$
	E NE H		HE
W	$Y \cap D \frac{P C J}{T H E} X L L L$		

c. From the initial and subsequent tentative identifications shown in Figures 29, 30, 31, and 32, the values obtained were arranged in the form of the secondary al phabets shown in Figure 33.

Fig. 33.
34. Fundamental theory. - a. In paragraph 31 methods of reconstructang pramary components from secondary alphabets were given in detail. It 18 necessary that those methods be fully understood before the following steps be studied. It was there shown that the primary component can be one of a series of 26 equivalent primary sequences, all of which will give exactly sumilar results so far as the secondary alphabets and the cryptographic text are concerned. It is not necessary that the identical or original primary component employed in the cryptographing be reconstructed; any equivalent primary sequence will serve. The whole question is one of establishing a sequence of letters the interval between which 18 either adentical with that in the original primary component or else is an exact constant multiple of the interval separating the letters in the original primary component. For example, suppose K PXNQ forma a sequence in the original primary component. Here the interval between K and P, P and X, X and N, N and Q is nne; in an equivalent primary component, say the sequence I. . P. . X. . N. . Q, the interval between K and P is three, that between P and X also three, and so nn; and the two sequences will yield the same secondary alphabets. So long as the interval between K and P, P and X, X and N, N and Q is a constant one, the sequence will yıeld the same secondary alphabets as do those of the original primary sequence. However, it is necessary that this interval be an odd number nther than 13, as these are the only cases which will yield one unbroken sequence of 26 letters. Suppose a secondary alphabet to be as follows

$$
\begin{aligned}
& \text { Plain - ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { Cipher - } \\
& \text { X K }
\end{aligned}
$$

REF ID:A64561
 - 77 -

It can be said that the primary component contains the following sequences:

XIN KP NQ PX

These, when united by means of their common letters, yield K P X N Q.
Suppose also the following secondary alphabet is at hand:

$$
\begin{aligned}
& \text { Main - ABCDEFGHIJKLMNOPQRSTUVWXYZ } \\
& \text { Capher - }
\end{aligned}
$$

Here the sequences $P N, X Q, K X$, and $N Z$ can be obtained, which when united yield the two sequences $K X Q$ and PNZ.

By a compariscn of the sequences $K P X N Q, K X Q$, and $P N Z$, rne can establish the following:
$K \mathrm{PXNQ}$
K • X • Q
P.N. Z

It follows that one can now add the letter 2 to the sequence, making it K P X N Q Z.
b. The reconstruction of a primary alphabet from one of the secondaries by the prncess given in paragraph 31 requires a complete or nearly complete secondary alphabet. This $1 s$ at hand only after a cryptogram has been completely solved. But if one could employ several very scant or skeletonized secondary alphabets simultaneously with the analysis of the cryptegram, one could then possibly build up a primary component from fewer data and thus solve the eryptogram much more rapidly than would otherwise ke the case.
\&. Suppose anly the expher components of the two secondary alphabets given above be placed into juxtaposition. Thus:

The sequences $P X, X_{N}$, and KP result, which, united, yield KPXN as part of the primary sequence. It follows, therefore, that one can employ the cipher components of secondary alphabets as sources of independent data to assist in building up the primary sequences. The usefulness of this point wall become clearer subsequently.
35. Application of principles. - 昷. Refer now to Figure 33. Hereafter, in order to avoid all ambiguity and for ease in reference, the position of a letter in Figure 33 will be indicated by coordinates in perentheses. Thus, $N(6-7)$ refers to the letter N in line 6 and in column 7 of Figure 33.
b. (I) Now, consider the following pairs of letters:

$$
\begin{array}{lll}
E(\varnothing-5) & J(6-5) \\
G(\phi-7) & N(6-7) \\
\left(\begin{array}{lll}
H & (\phi-8) & C(6-8) \\
(& (\varnothing-15) & F(6-15)
\end{array}\right)
\end{array}
$$

(One is able to use the line marked zero in Figure 33 since thas $1 s$ a mixed sequence sliding against itselfe)
(2) The imadiate results of this set of values will now be given. Having HOF as a sequence, with EJ as belonging to the same interval set, suppose HOF and EJ are placed into juxaposition as portions of sliding alphabets. Thus:

$$
\begin{aligned}
\text { Plain - • . H O F . . . } \\
\text { Capher - }
\end{aligned}
$$

When $H_{p}=E_{c}$, then $O_{p}=J_{c}$ -
(3) Refer now to alphabet 10, Figure 33, where it is seen that $H_{p}=F_{c}$. The demired valıe, $O_{p}=J_{c}$; rar jamodietely be inserted in the same alphabet ayr sish-t
c. (1) Again, Cl, reiongs to the same set of interval values as do EJ and HOF. Hence, by superampositinns

$$
\begin{array}{r}
\text { Ylain - . . HOT . . . } \\
\text { Capher - . . GN . . }
\end{array}
$$

(2) Whan $H_{D}=G$, then $O_{p_{t}}=N_{c}$. Therefore, the value $O_{p}=N_{c}$ can be inserted and aiso substltuted in the cryptogram.
(3) Furthermore, note the corroboration we find Prnm this particular superimposition.

$$
\begin{aligned}
& H(\phi-8) \quad G(\phi-7) \\
& O(6-8) \quad N(6-7)
\end{aligned}
$$

REF ID:A64561

- 79 -

This checks up the value in alphabet $6, G_{p}=N_{c}$.
d. (1) Again superimpose HOF and GN:

$$
\begin{array}{r}
\text { HOF } \\
\text { G }
\end{array}
$$

(2) Note thas corrcboratinn:

$$
\left.\begin{array}{lllll}
0 & \left(\begin{array}{lll}
6 & -8
\end{array}\right) & G & \left(\begin{array}{ll}
4 & -8
\end{array}\right) \\
F & (6 & -15) & N & (4
\end{array}-15\right)
$$

which has just been inserted in Figure 7, as stated above。
e. (1) Again using HOF and EJ, but in a different superimposition, we have:

(2) Refer now tn $H(9-9) J(9-8)$. Directly under these letters is found $V(10-9) \quad E(10-8)$. Therefore, the V can be added amediately before H O F, making the sequence V H O F.
f. (1) Now take VHOF and Juxapose it with E J, thus:

VHOF
E J
(2) Refer now to Figure 33, and find the following:

V	(10-9)	E ($10-8$)
H	($9-9$)	J ($9-8$)
C	($4-9$)	$\mathrm{G}(4-8)$
I	(\varnothing - 9)	H (\varnothing - 8)

(3) From the value $0 G$ it follows that G can be set next to J in E J. Thus:

VHOF
EJG
(4) But G N is already a member of the same interval as E J. Therefore, it is now possible to combine $E J, J G$, and $G N$ into cne sequence, E J G N, yıelding:

VHOF
玉 J G N

REF ID:A64561

- 80 -
g. (1) Refer now to Figure 33.

V	$(\varnothing-22)$	$\mathrm{E}(\phi-5)$
$?$	$(1-22)$	$\mathrm{G}(1-5)$
$?$	$(2-22)$	$\mathrm{K}(2-5)$
$?$	$(3-22)$	$\mathrm{X}(3-5)$
$?$	$(5-22)$	$\mathrm{D}(5-5)$
$?$	$(6-22)$	$\mathrm{J}(6-5)$

(2) The only values which can be inserted are:

$$
\begin{array}{lll}
0 & (1-22) & G(1-5) \\
H & (6-66) & J \\
\hline
\end{array}(6-5)
$$

(3) This means that $V_{p}={ }^{0} c^{\text {in alphabet }} 1$ and that $V_{p}=H_{c}$ in alphabet 6. There is cne O_{c} in the frequency distribution for alphabet l, and no H_{c} in that for alphabet 6. The frequency distribution 1s, therefore, corroborative insofar as these values are concerned:
h. (1) Further, taking E J GNand VHOF, superimpose them thus:

> E J G N

V H O F
(2) Refer now to Figure 33.

$$
\begin{array}{lll}
\mathrm{E} & (\emptyset-5) & \mathrm{H}(\varnothing-8) \\
\mathrm{G} & (1-5) & ?(1-8)
\end{array}
$$

(3) From the diagram of superimpesition the value G (1-5) F (1 - 8) can be inserted, which gives $H_{p}=F_{c}$ in alphabet 1.

1. (1) Again, V H OF and E J G N are Juxtaposeds

VH OF
§JGN
(2) Refer to Figure 33 and find the following:

$$
\begin{array}{lll}
H & (\varnothing-8) & G(4-8) \\
A & (\varnothing-1) & E(4-1)
\end{array}
$$

This means that it $1 s$ possible to add A, thus:

$$
\begin{aligned}
& \text { AVHOF } \\
& \text { E JGN }
\end{aligned}
$$

(3) In the set there are also:

$$
\begin{array}{ll}
E(\not \subset-5) & G(1-5) \\
G(\neq-7) & Z(1-7)
\end{array}
$$

Then in the superimposition
E J G N
EJGN
It $1 s$ possible to add 2 under G, making the sequence $E J G N Z$.
(4) Then takıng

> AVHOF
> E JGNZ
and referring to Figure 33:

$$
\begin{array}{lll}
H & (\phi-8) & N(\phi-14) \\
0 & (6-8) & ?(6-14)
\end{array}
$$

It will be seen that $0=2$ from superimposition, and hence in alphabet 6 $N_{p}=Z_{c}$, an amportant new value, but occurring only once in the cryptogram. Hâs an error been made? The work so far seems tce corroborative in interlocking details to think so.
2. (1) The possibilities of the superimposition and sliding of the AVHOF and the EJGNZ sequences have by no means been exhausted as yet, but a little different trail this time may be advisable.

$$
\begin{array}{lll}
E & (\emptyset-5) & T(\phi-20) \\
G & (1-5) & K(1-20) \\
K & (3-5) & U(3-20)
\end{array}
$$

(2) Then:

$$
\begin{aligned}
& \text { E J G NX } \\
& \text { T. K }
\end{aligned}
$$

(3) Now refer to the following:

$$
\begin{array}{lll}
\mathrm{E} & (\not \varnothing-5) & \mathrm{K}(2-5) \\
\mathrm{N} & (\nsim-14) & \mathrm{S}(2-14)
\end{array}
$$

$$
\begin{aligned}
& \text { REF ID:A64561 } \\
& \text { - } 82 \text { - }
\end{aligned}
$$

whereupon the value S can be inserted:

$$
T . \begin{aligned}
& \mathrm{E} \text { J G N Z } \\
& \mathrm{K} . \mathrm{S}
\end{aligned}
$$

k. (1) Consider all the values based upon the interval corresponding to JG:
(2) Since J and G are sequent in the EJGNZ sequence, it can be sald that all the letters of the ioregolng pairs are also sequent. Hence Z C, S P, and K D are avalable as new deta. These give E J G N Z C and T.K D.S P.

(3) Now in the T.K D.S P sequence the interval between T and P1s T. 23456 . Hence the interval between A and $E 2 s 6$ also. It follows therefore that the sequences AVHOF and I J GNZC should be united thus:

> 123456
> AVHCF.EJGNZC
(4) Corroboration is found in the interval between H and G, whach is six. The letter I can be placed into position, from the relation I (\varnothing - 9) $0(4-9)$, thus:

123456
I. AVHOF.E JGNZC
1.(1) From Figure 33:

H	$(\emptyset-8)$	Z	$(2-8)$
E	$(\emptyset-5)$	K	$(2-5)$
N	$(\emptyset-14)$	S	$(2-14)$
U	$(\emptyset-21)$	F	$(2-21)$

(2) From the I. AVHCF.E JGNZC sequence one can write:

REF ID:A64561

(3) Hence one can make the sequence

$$
\text { I. . AVHOF. E } \begin{array}{llllllll}
1 & \text { J } \\
\text { G N Z C }
\end{array}
$$

Then I..AVHOF.EJGNZCT.KD.SP

m. (1) Subsequent derivations can be indicated very briefly as follows:

$$
\begin{array}{lll}
\mathrm{F} & (\phi-5) & \mathrm{C} \\
\mathrm{D} & (\phi-3) \\
(5-5) & \mathrm{R} & (5-3)
\end{array}
$$

 one can write
and

$$
\begin{array}{llllll}
\text { D } & i & \dot{1} & \text { R } \\
& i & 4 & 5
\end{array}
$$

making the sequence

(2) Another derivations

$$
\begin{array}{llll}
\mathrm{U} & (3-20) & \mathrm{T} & (\varnothing-20) \\
\mathrm{X} & (3-5) & \mathrm{E} & (\varnothing-5)
\end{array}
$$

 From UI..AVHOF.E J G \quad I one can write

U I T
and
making the sequence

UI . AVHOF.E J G N Z C T. K D X S P • R .
(3) Another derivations

$$
\begin{array}{llll}
E & (\phi-5) & G & (1-5) \\
B & (\phi-2) & W & (1-2)
\end{array}
$$

From E J G
one can write and then
There is only one place where B. W can fit, viz, at the end

$$
\text { UI.AVHOT. } \mathbf{Z} \quad J \quad G \quad N \quad Z \quad T \quad T \quad K \quad D \quad X \quad S \quad P \quad B \quad R \quad W
$$

n．Only four letters remein to be placed into the sequence：L, M ， Q，and Y ．They were easily found by application of the primary component to the message．Having the primary component almost fully constructed，de－ cipherment of the cryptogram can be completed with speed and precision． The text $1 s$ as follows：

	FUPCFOCJY	RCYOPNBLCW	BKDZFMTGQJ
	UTTHOUGHW	POSINGTHES	SELFWILIGO
	BZDPFBOUO	LQZAAAMDCH	LFUYDTZVHQ
E	CANNOTASY	OLARSYSTEM	CUTBECOMIN
	RFT2MQMAV	BZZCKQOIKT	Z G WNKXJTRN
E		SHALLT J R M A	GACOLDANDL
	ZUGDYFTRW	CFESCVXCHZ	YTXCDPMVLW
T	HTHEMINDS	NUNCHANGIM	IFSLESSMAS
	J X N L WYOUX	乙 2 S DMy WCm	BGBWWOQRGN
T	Y \boldsymbol{H} OURPAST	GFACEINPER	SANDTHESOL
	TW刃 P （20KZ	PKYHEQEDGX	HHVLAQQVAV
	ECANTOANE	PRTUTTYTOT	ARSYSTEMTI
	RXC M L 2 I C	FKVHPJJKJY	JQTOOTTNVQ
	TENTFORES	HTSUNEACHW	LICIRCLEUN
	KQHOLODVM	Y Q D P J X L L	BKXDSOZRSN
	EOURTUTUR	${ }^{*} \mathrm{~L}$ L THENHAV	SEENGHOSTL
	OXSNZHASE	CHXEROQPSE	\boldsymbol{Y} UXOPPYOXZ
E	WECANWITH	EREACHEDTH	IKEINSPACE
	B JIPQFJHD	GKBWTLTVUZ	HO2OKMXCGQ
	CIENTIFIC	EENDOFITSE	AWAITINGON
	CBZEXQ X Z	OCDHVMZTUZ	J J U G JWQRVM
	ONFIDENCE	VOLUTIONSE	LYTHERESUR
	CQRQFVMLH	KLBPCJOTXE	UKWPEFXENT
	OOKFORWAR	TINTHEUNCH	RECTIONOFA
	R 2 T W M L NAE	HSPOPNMDLM	CCUGDWPEUH
	TOATIMEYH	ANGINGSTAR	NOTHERCOSM
	SXEROZJS』	GCKWDVBLSE	YBWEWVMDYJ
	NEACHOFTH	\＃OFDEATHTH	ICCATASTRO
	VQIVE JMKGH1	GSUGDPOTHX	R 2 X
	BODIESCOM	ENTHESUNTT	P HE

36. General remarks. - a. It is to be stated that the sequence of steps described in the preceding paragraphs corresponds quite closely wath that actually followed in solving the problem. It is also to be pointed out that this method can be used as a control in the early stages of analysis because it will allow the cryptanalyst to check assumptions for values. For example, the very first value derived in applying the principles of indirect symmetry to the problem herein deseribed was $H_{c}=A_{p}$ in alphabet 1. As a matter of fact the writer had been inclined toward this value, from a study of the frequency and combinations which H_{c} showed; when the indirectsymmetry method actually substantiated his tentative hypothesis he immediately proceeded to substitute the value given. If he had assigned a different value to H_{c}, or if he had assumed a letter other than H_{c} for A_{p} in that alphabet, the conclusion would ammediately follow that oither the assumed value for H_{c} was erroneous, or that one of the values which lot to the derivation of $H_{c}=A_{p}$ by indirect symmetry was arong. Thus, these principles ald not only in the systematic and nearly automatic derivation of now values (with only occasional, or incidental references to the actual frequencies of letters), but they also assist very materially in serving as corroborative checks upon the valxily of the assumptions already made.
b. Furthermore, while the writer has set forth, in Figure 33, a set of 30 values apparently obtained before he began to reconstruct the primary componont, this was done for purposos of clarity and brevity in exposition of the principles herein described. As a matter of fact, what he did was to watch very carefully, when inserting values in Figure 33, to find the very first chance to employ the principles of indarect symmetry; and just as soon as a value could be derived, he substituted the value in the cryptographic text. This is good procedure for two reasons. Not only will it disclose impossible combinations but also it gives opportunity for making further assumptions for values by the addition of the derived values to those previously assumed. Thus, the processes of reconstructing the primary component and finding additional data for the reconstruction proceed simultaneously in an ever-widening circle.
c. It $1 s$ worth noting that the careful analysis of only a sum total of 30 values in Figure 33 results in the deravation of the entire table of secondary alphabets, 676 values in all. And while the elucidation of the method seems long and tedious, in its actual application the results are speedy, accurate, and gratifying in their corroborative effect upon the mental actavaty of the cryptanalyst.
d. (1) The problem here used as an illustrative case is by no means one that most favorably presents the applacation and the value of the method, for it has been applied in other cases whth much speedier sucoéss. For example, suppose that in a cryptogram of 6 alphabets the equivalents of only THE in all 6 alphabets are fairly certain. As in the previous case, it is supposed that the secondary alphabets are obtained by
alıding a mixed alphabet against itself. Suppose the secondary alphabets to be as follows:

FIg. 35.
(2) Consider the followang chain of derivatives arranged diagramatically:

FIg. 36.
(3) These pairs are manifestly all of the same interval, and therefore unions can be made immediately. The complete list is as follows:

EX	QL	NI	LH
HO	BC	$O Z$	CE
TP	PV	XI	VQ

$$
\begin{aligned}
& \begin{array}{llll}
\mathrm{H} & (\varnothing-8) & 0 & (5-8) \\
\mathrm{T} & (\varnothing-20) & \mathrm{P} & (5-20)
\end{array} \\
& E \quad(\varnothing-5) \quad X \quad(5-5) \longrightarrow E(1-20) \quad X(2-20) \\
& \begin{array}{rlrl}
\mathrm{Q}(1-58) & \mathrm{L}(2-8) \\
\mathrm{B}(1-5) & \mathrm{C}(2-5) & \rightarrow & \mathrm{B}(4-20) \\
& \mathrm{N}(4-5) & \mathrm{C}(3-20) \\
& \mathrm{P}(4-8) & \mathrm{I}(3-5) \\
& & & (3-8) \rightarrow
\end{array}
\end{aligned}
$$

(4) Joining pairs by their common letters, the following sequence is obtained:

NIBCEXTOVQLHOZ

, e. With this as a nucleus the cryptogram can be solved speedily and accurately. When it is realized that the cryptanalyst can assume THE's rather readily in some cases, the value of thas principle becomes apparent. When it is further realized that if a cryptogram has sufficient text to enable the THE's to be found easily, it is usually also not at ail difficult to make cerrect assumptions for values for two or three other high-frequency letters, it is clear that the principles of indirect symmetry of position may often be used with gratifyingly quick success to reconstruct the complete primary component.

SECTION IX.

RAPEATING-KEY SYSTEMS WITH MIXED CIFHER ALPHABETS,III.

$$
\begin{aligned}
& \text { Par. } \\
& \text { Solution of messages enciphered by known primary components. . . } 37 \\
& \text { Solution of repeating-key ciphers in which the identical } \\
& \text { mixed components proceed in opposite directions. } 38 \\
& \text { Solution of repeating-key ciphers in which the primary } \\
& \text { components are different mixed sequences. } 39 \\
& \text { Solution of subsequent messages after the primary components } \\
& \text { have been recovered. } 45
\end{aligned}
$$

37. Solution of subsequent messages enciphered by the same primary components. - a. In the discussion of the methods of solving repeating-key clphers using secondary alphabets derived from the sliding of a mixed component against the normal component, (Section V), it was shown how subsequent messages encipherea by the same pair of pramary components but with different keys could be solved by application of principles involving the completion of the plain-component sequence (paragraphs 23, 24). The present paragraph deals with the application of these same principles to the case where the primary components are identical mixed sequences.
b. Suppose that the following primary component has been reconstructed from the analysis of a lengthy cryptogram:

QUESTIONABLYCDFGHJKMPRVWXZ

A new message exchanged between the same correspondents is intercepted and $1 s$ suspected of having been enciphered by the same primaly components but with a different key. The message 18 as follows:

| NFWWP NOMKI WPIDS_CAAET QVZSE | |
| :--- | :--- | :--- | :--- | :--- |
| YOJSC AAAFG RVNHD WDSCA | EGNFP |
| FOEMT HXLJW PNOMK IQDBJ IVNHI | |
| TFNCS BGCRP | |

c. Factoring discloses that the period $1 s 7$ letters. The text $1 s$ transcribed accordingly, and is as follows:

| N | F | W | W | P | N | O |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M | K | I | W | P | I | D |
| S | C | A | A | E | T | Q |
| V | Z | S | E | Y | O | J |
| S | C | A | A | A | F | G |
| R | V | N | H | D | W | D |
| S | C | A | E | G | N | F |
| P | F | O | E | M | T | H |
| X | L | J | W | P | N | O |
| M | K | I | Q | D | B | J |
| I | V | N | H | L | T | F |
| N | C | S | B | G | C | R |

$$
\text { Fig. } 37 .
$$

d. The letters belonging to the same alphabet are then employed as the initial letters of completion sequences, in the manner shown in paragraph 23e, using the already reconstructed primary component. Tne completion diagrams for the first fave letters of the first three alphabets are as follows:

Alphabet 1.
NMSVS
3 RIXI
LVOZO
Y W N Q N
CXAUA
D Z BEA
FQLSL
GUYTY

+ H E C I G
JSDOD
KTFNF
MIGAG
POHBH
R N JLJ
VAKYK
WBMCM
$X L P D P$
ZYRFR
QCVGV
U D WH W
EFXJX
SG2K2
THQMQ
I JUPU
OKERE

Alphabet 2.
$\frac{F K C Z C}{G M D Q D}$
HPFUF
JRGEG
KVHSH
M ワ JTJ
PXKIK
R2MOM
V Q PN P
TURAR
XEVBV
ZSWL:
Q TXYX
UIZCZ
EOQDQ
SNUFU
TAEGE
I B SHS
0 LT JT
NY I K I
*A C OMO
BDNPN
LFARA
YGBVB
Ch LW L
D J Y X Y

Alphabet 3.

WIASA
XOB O

Z N L I L
QAYOY
UBCNC
ELDAD
SYFBF
TCGLG
I DHYH
OFJC J
NGKDK
AHMFM
B J PGP
LKRHR
YMVSV.
C PWKW
D R XM X
FVZPZ
GWQRQ
HXUVU
JZEWE
K Q S XX
MUTZT
PEIQI
RSOUO
*V T N EN

FIg. 38.
E. Examining the successive generatives to select the ones showing the best assortment of high-frequency letters, those marked in Figure 38 by asterisks are chosen. These are then assembled in columar fashion and yield the following plain text:

234567
HA V
E CT
CON
I me
CON

Fig. 39.
f. The corresponding ksy-letters are sought and are found to be JOU, which suggests the keyword JOURNEY. Testing the key-letters RNEY for alphabets 4, 5, 6, and 7, the followang results are obtained:

$$
\begin{aligned}
& 1234567 \\
& \text { JOURNEY } \\
& \text { NFWWPNO } \\
& \text { HAVEDIR } \\
& \text { SCAAETQ } \\
& \text { ECTEDSE }
\end{aligned}
$$

Fig. 40.
The message may now be completed with ease. It $1 s$ as follows:

JOURNEY	JOURNEY
HAVEDIR	SAINCEI
NFWWPNO	PFOEMTH
ECTEDSE	NTHEDIR
MKIWPID	XL JWPNO
CONDREG	ECTIONO
SCAEETQ	MKIQDBJ
IMENTTO	FHORSES
VZSEYOJ	IVNHLTF
CONDUCT	HOEFALL
SCAAAFG	NCSBGCR
TRORORE	S
RVNHDWD	P
CONNAIS	
SCAEGNF	

FIg. 41.
38. Solution of repeating-key ciphers in which the identical mixed components proceed in opposite directions. - The secondary alphabets in this case (paragraph 3, Case B (3) (a) (II) are reciprocal. The steps in solution are essentially the same as in the preceding case (paragraph 28).
the principles of indirect symmetry of pnsition can also be applied with the necessary modifications int roduced by virtue of the reciprocity ex1sting within the, respective secondary alphabets (paragraph 31 p).
39. Solution of repeating-key ciphers in which the primary components are different mixed sequences. - This 15 Case B (3) (b) of paragraph 3. The steps in solution are essentially the same as in paragraphs 28 and 31, except that in applying the principles of indirect symurotry of position it 28 necessary to take cognizance of the fact that the primary components are different mixed sequences (paragraph 31 g).
40. Solution of subsequent messages after the primary components have been recoverod. - a. In the case in which the primary components are identical mixed sequences proceoding in opposite directions, as well as in that in which the primary components are difforont maxed sequonces, the solution of subsequent messages ${ }^{2}$ is a relatively easy matter. In both cases, however, the
$1_{\text {That }}$ 2s, messages intercepted after the pramary components have been reconstructed, and enciphered by keys different from those used in the messages upon which the reconstruction of the primary components was accomplished.
student must remember that before the method illustrated in paragraph 37 can be applied it $1 s$ necescary to convert the cipher letters into their plaincomponent equivalents before completing the plain-component sequence. From there on, the proc3ss of selecting and ascembling the proper generatrices is the same as usual.
b. Perhaps an example may bs advisable. Suppase the enemy has been found to be using primary compononts based upon tho keyword QUESTIONABLY, the plain component running from left to raght, the cipher component in tho roverso diroction. Ths followng now mossage has arrived from tho intorcopt station:

| KYXOX BZIYZ NLWZH OXIEO OOEPZ | |
| :--- | :--- | :--- | :--- | :--- |
| FXSRX EJBSH BONAU RAFZI NRAMY- | |
| XOXAI JYXWF KNDOT JERCU RALYB | |
| ZAQUW JWXYI | DGRKD QBDRM QECYV |
| QY | |

g．Factoring discloses that the period is 6 and the message is accordingly transcribed into 6 columns，Fig．42．

123456 MVXOXB Z I Y Z N L WZHOXI EOOOEP 2 FXSRX E J B SHB O．NAUKA PZINRA MVXOXA I JYXWF KNDOWJ ERCURA LVBZAQ U WI JWXY IDGRKD QBDRMQ ECYVQW The letters of these columns are then con－ verted into thear plain component equivalents by juxtaposing the two primary components at any point of coincidence，for example $Z_{p}=Z_{c}$ ．The converted letters are shown in Fig．43．The letters of the individual columns are then used as the initial let－ ters of completion sequences，using the QUESTIONABLY primary sequence．The final step is the selection and assembling of the selected generatrices．The results for the first ten letters of the first three columns are shown below：

FIg． 42
Column 1.
 AETZEZRNAV BSIのSQVABW LTOUTU界BLX YINEIEXLYZ COASOSZYC\＆ DNBTNTQCDU ＊ F alafudfe GBYOBOEFGS HLCNLNSGHT JYDayATHJI KCFBCBIJKO MDGLDLOKMN PFHYFYNRPA RGJCGCAPRB VHKDHDBRVL サJMFJFLVUY XKPGKGYWXC ZMRHMHCXZD Q PVJPJDZQF URWKRKFQLG EVXMVMGUEH S サ Z P Y PHESJ TXQRSRJSTK IZUVZVKTIM

Column 2．
 ＊IVERDLPEIL OWSVFYRGOY NXTWGCVTNC AZIXHDWIAD BQOZJFXOBF LUNQKGZNLG YEAUMHQAYH CSBEPJUBCJ DTLSRKELDK FIYTVMSYFM GOGIWPTCGP HNDOXRIDHR JAFNZVOF．，V KBGAQサNGKW HLKBUXAHMX PYJLEZBJPZ RCKYSQLKRQ VDMCTUYMVU WFPDIECPWE ，XGPFOEDRXS 2 YVGNTTVZT QJWHAIGWQI UKXJBOHXUO ELiKKLNJZEN

123456 0 SUMUH QPFQKG EQBMUP WMMMWI QYUVTU WAHVBH MK JXT J I Q PKTJ 0 SUMUJ PAFUEY NKCNEA WTDXTJ G5HQJZ XEAEUF PCLTNC 2 HCTOZ WD FSZE Fig． 43.

Column 3.

UFBMUHJPUF
EGLEJKREG

 CZPTCUEICZ DQRIDESODV FUVOFSTNFU GEWNGTIAGE HSXAHIOBHS JTZBJONLJT KIQLKNAYKI MOUYMABCMO PNECPBLDPN ＊RASDRLYFRA VBTFVYCGVB WLIGWCDHWL XYOHXDFJXY ZCNJZFGKZC Q D KKQGHN ？D

Columar assembling of selected generatrices gives what is show in Fig. 4.5.

Fig.45.
d. The key letters are sought, and found to be NUM, which suggests NUMBER. The entire message may now be read with ease. It is as follows:

NUMBER	NUMBER
FIRSTC	ELAYIN
M V X O X B	IJYXVF
A VALRY	GPOSIT
Z I I 2 N	K NDOW J
LeSSTH	IONAND
W2HOXI	FRCURA
IRDSQU	WILLPR
EOOOEP	LVBZAQ
ADEONW	OTECTL
2 FXSRX	UWIJTXY
IL LOCC	EfTFLA
EJBSHB	IDGRKD
UPYAND	NKOFBR
ONAURA	Q B DRMQ
DEFEND	IGADEX
PZINRA	ECYVQW
FIRSTD	
MVXOXA	

Fig. 46.
Q. If the primary components are aifferent mixed sequences, the procedure $1 s$ zdentical with that just indicated. The important point to note ls that one must not fail to convert the letters into their plaincomponent equivalents before the completion-sequence method is applied.
SECTION X.
REPEATING-KEY SYSTEMS WITH MIXED CIPHER ALEHABETS, IV.Par.
General remarks. 41
Deriving the secondary alphabets, the primary components, and the key, gaven a cryptogram with $2 t$ s plain text. 42
Deriving the secondary alphabets, the primary components, and the keywords for messages, given two or more cryptograms in different keys and suspected to contain identical plain text. 43
The case of repeating-key systems. 44
The case of Identical messages enciphered by keywords of different
lengths 45
Concluding remarks. 46
41. General remarks. - The preceding three sections have been devoted to an elucidation of the general principles and procedure in the solution of typical cases of repeating-key ciphers. This section will be devoted to a consideration of the variations in cryptanalytic procedure arising from special carcumstances. It may be well to add that by the designation special circumstances it is not meant to imply that the latter are necessarily unusual circumstances. The student should always be on the alert to sezze upon any opportunities that min appear in which he may apply the methods to be describedo In practical work such opportunities are by no means rare and are seldom overlooked by competent cryptanalysts.
42. Jeriving the secondary alphabets, the primary compnnents, and the key, given a cryptogram wath its plain toxt, - a. It may happen that a cryptogram and its equavalent plain text may be at hand, as the result of capture, pilferage, compromise, etc. This as a general rule affords a very easy attack upon the whole system.
b. Taking first the case whore the plain component 13 the normal alphabot, the cipher component a mixed sequence, the first thing to do 18 to write out the cipher text wath its letter-for-lettor decipherment. From this, by a slight modification of the principles of "factoring", one
discovers the length of the key. It is obvious that when a word of three or four letters is enciphered by the same capher text, the interval between the two occurrences is almost certainly a multiple of the length of the key. By noting a few recurrences of plain text and cipher letters, one can quickly determine the length of the key (assuming of course that the message 18 Iong ertough to afford sufficient data). Having determined the length of the key, the message is rewritten according to its periods, with the plann text likemse in periods under the cipher letters. From this arrangement one can now recnnatruct complete or partial secondary alphabets. If the secondary alyabete are complete, they will show direct symetry of pnsition; if the: are but fragmentary in several alphabets, then the primary component can be reconstructed by the application of the principles of direct symmetry of position:
c. If the plain component is a maxed sequence, the capher component the normal (direct or reversed sequence), the secondary alphabets will show no direct symmetry unless they are converted into their reciprocals (deciphering alphabets). The studert should be on the looksut for such cases.
d. (1) If the plain and cipher primary components are identical mixed sequences procesding in the aame direction, the secondary alphabets will show indirect symmetry of position, and they can be used for the speedy reconstruction of the primary components (Paragraph 31 a.to o.).
(2) If the plain and the cipher primary components are identical mixed sequences proceeding in opposite directions, the secondary alphabets will be combletely reciprocal secondary alphabets and the primary component may be reccnstructed by applying the principles outlined in paragraph 31 p.
(3) If the plain and the cipher primary components are different mixed sequences; tiie secondary alphabets will show indirect symentry of position and the primaly components may be reconatructed by applying the principles outlined 3 י raragraph 31 g-

日. In all the foregoing cases, after the primary components have been reconstructed, the keys can be readily recovered.
43. Deriving the secondary alphabets, the primary components, and the keyworts for messages, given two or more cryptograms in different keys and suspected to contain identical plain text. - E. The simplest cese of this kind is that anvolving two monoalphabetic substitution caphers with mixed alphabets derived from the same pair of sliding components. An understanding of this case is necessary to that of the case involving repeating-key ciphers.
b. (1) A message is transmitted from otation A to station $B_{0} B_{0}$ sends A some operating signals which indicate that B cannot decipher the
message, and soon thereafter A sends a second message, identical in length with the first. This leads to the suspicion that the plain text of both messages is the same. The intercepted messages are superimposed. Thus 1

1.	NXGRV	MPUOF	ZQVCP	VITRXX	QDZVX	VX2QE
2.	EMLHJ	FGVUB	PRJNG	JK.JM	RAPJLI	KMAPRW
1.	TBDSP	VNXJK	Rrzar	ZUWLU	IYVZQ	FXOAR
2.	ZTAX	JJMCD	HBFKY	PVKIV	QOJPR	BMUSH

(2) In initiating a chain of cipher-text equivalents from message 1 to message 2, the following complete sequence is obtained:

(3) Experimentation along already-indicated lines soon discloses the fact that the foregoing component is an equivalent primary component of the original primary based upon the keyword QUESTIONABLY, decamated on the 2lst interval. Let the student decipher the cryptogram.
(4) The foregoing example is somewhat artificial in that the plain text was consciously selected with a view to making it contain every letter of the alphadet. The purpose in doing this was to permit the construction of a complete chain of equivalents from only two short messages, in order to give a simple illustration of the principles involved. If not every letter of the alphabet 13 present in the plain-text message, then only partial chains of equivalents can be constructed. These may be uhited, if circumstances will permit, by recourse to the various principles elucidated in paragraph 31.
(5) The student should carefully study the foregoing example in order to obtain a thorough comprehension of the reason why it was possible to reconstruct the pramary component from the two cipher messages without having any plain-text to begin with at all. Since the plain text of both messages is the same, the relative displacement of the primary components in the case of message 1 differs from the relative displacement of the same primary components in the case of message 2 by a fixed interval. Therefore, the distance on the primary component, between N and E (the first letters of the two messages), regardless of what plain-text letter these two cipher letters represent, is the same as the distance between E and \mathbb{I} (the l8th letters), \mathbb{W} and K (the 17 th letters), and so on. Thus this fixed interval permits of establishing a complete chain of letters separated by constant intervals and this chain becomes an equivalent primary component.
44. The case of repeating-key systems. - a. With the fnregoing basic principles in mind the student is ready to note the procedure in the case of two repeating-ker ciphers having identical plain texts. J.rst, the case in which both inessag's have keymords of identical length but different compositions will be surudied.
b. Glven the following two cryptograms suspected to contain the same plain text:

Message 1

| YHYEX UBUKA PVLLT ABUVV DYAB | | |
| :--- | :--- | :--- | :--- | :--- |
| PC\&TU NGKFA | ZEFIZ BDJEZ ALVID | |
| TROQS UHAFK | | |

Message 2.
CGSLZ QUBMN CTYBV HL QFT FLRHL
MTAIQ 2 WMDQ NSDWN LCBLQ NETOC
VSNZRBJNO
The first atep $1 s$ to try to determine the length of the period. The usual method of factoring canyot be employed because there are no long repetitions and not enoug repetitions even of digraphs to give any convincing indications. Howevers a subterfuge will be employed, based upon the thenry of factoring.

> c. Let the two messages be superimposed.
> $\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 6 & 7 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20\end{array}$
> 1. YHYEXUBUKA P V L L T A B U V V

Now let a search be made of cases of adentical superamposition. For example, $444 \quad 6 \quad 18 \quad 30$ $\begin{array}{llll}E \\ L & E \\ L\end{array}$ are separated by 40 letters, $\begin{aligned} & U, \\ & Q \\ & Q\end{aligned}$
separated by 12 letters. Let these intervals between identical superimpositions be factored, just as though they were ordinary repetitions. That factor which is the most frequent should correspond with the length of the period for the following reason. If the period is the same and the plain text is the same in both messages, then the condition of identity of superimposition can only be the result of identity of encipherments by identical cipher alphabets. Thas is only another way of sayzng that the same relative position in the keying cycle has been reached in both cases of identity. Therefore, the distance between identical superimpositions must be either equal to or else a multiple of the length of the period. Hence, factoring the intorvals must yield the length of the porind. The complete list of intervals and factors applicable to cases of identical superimposed pairs is as follows (factors above 12 are omittod):

1st EL to $2 \mathrm{~d} E L-40=2,4,5,8,10$ lst TV to $2 d \mathrm{TV}-36=2,3,4,6,9,12$
lst $U Q$ to $2 d U Q-12=2,3,4,6,12$ lst $A H$ to $2 d A H-8=2,4,8$
2d $U Q$ to $3 d U Q-12=2,3,4,6,12$ lst $B L$ to $2 d B L-8=2,4,8$
1st UB to $2 \mathrm{~d} U B-48=2,3,4,6,8,12$ 2d BL to 3 d BL $-16=2,4,8$
lst $K M$ to $2 d \mathrm{KM}-24=2,3,4,6,8,12$ lst $S R$ to $2 \mathrm{~d} S R-32=2,4,8$
1st $A N$ to $2 \mathrm{~d} A N-36=2,3,4,6,9,12$ lst FD Eo $_{0} 2 \mathrm{~d}$ FD - $4=2,4$
2d AN to 3 A AN - $12=2,3,4,6,12$ lst $2 N$ to $2 d \operatorname{di}-4=2,4$
1st VT to $2 \mathrm{dVT}-8=2,4,8 \quad$ lst $D C$ to $2 \mathrm{~d} D C-8=2,4,8$
2d VT to 3d VT - $28=2,4,7$

The feircr ≤ 25 the only one common to every one of these intervals and it may be taken as beyond question that the length of the period $1 s 4$.
d. Let the messages now be superimposed according to their periods:
$\left.\begin{array}{lllllllllllllllllllllllllll} & \mathbf{I} & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2\end{array}\right)$
Q. Now distribute the superimposed letters intn "seconiary alphabets".

Thus:

2. | N | C | D | G | B | M Z | Q | L | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3. QUT | O | T | B | E | Z | C | $\mathrm{R} V$ | F | S |

by the usual methods, construct the primary or an equivalent primary component. Taking lines 0 and 1 , the following sequences are noteds

$$
\mathrm{BL}, \mathrm{DF}, \mathrm{ES}, \mathrm{HJ}, \mathrm{IO}, \mathrm{KH}, \mathrm{LY}, \mathrm{ON}, \mathrm{TI}, \mathrm{XZ}, \mathrm{YC}, \mathrm{ZQ} \text {, }
$$

which, when united by means of common letters and study of other sequences, yıeld the complete original primary component based upon the keyword QUESTIONABLY:

QUESTIONABLYGDFGHJKMPRVHXZ

The fact that the pair of lines with which the process was cormenced yield the original primary sequence is purely accidental; it maght have just as well yıelded an equivalent primary sequence.
f. Having the primary component, the solution of the messages $1 s$ now a relatively simple matter. An application of the method elucidated in paragraph 37 is made, anvolving the completion of the plain-component sequence for each alphabet and selecting those generatrices which contain the best assortments of high-frequency letters. Thus, ueing kessage is

lst alphabet	2d alphabet	3d alphabet	4 th alphabet
$\underline{Y} \times \mathrm{K}$ L B	HUALU	$\underline{Y P P T V}$	EUVAV
C Z M Y L	JIEYE	C LRIW	SEWBW
D P PCY	KS LCS	D Y V OX	T S X L X
FURDC	MTYDT	FCWNZ	ITZYZ
GEVFD	PICFI	GDXAQ	OIQCQ
H S WG F	RODGO	HFZBU	NOUDU
JTXHG	VNFHN	J G Q L E	*ANEFE
K I 2 JH	VAGJA	K HUYS	BASGS
MOQK J	X B HK ${ }^{\text {a }}$	M JECT	L BTHT
PNUMK	2 L J L	PKSDI	Y L I J I
RAEPM	Q Y K P Y	RMTFO	CYOKO
VBSRP	UCMRC	VPIGN	DCNMN
\% LTVR	a PVD	WROHA	FDAPA
X Y I Wr V	SFRTF	$X \vee N \mathrm{~J}$	GFBRB
ZCOXW	T G V X G	Z $\mathrm{B}^{\text {AK L }}$	HGLVL
Q D 2 X	I H 7 ZH	Q X B 以	JHY甘Y
UFAQZ	0 JXQ J	UZLPC	K J CXC
EGBUQ	NK Z UK	EQYRD	MKDZD
SHLEU	AM $\mathrm{O}^{\text {EM }}$	SUCVF	PMF? F
T JYSE	BPUSP	TEDWG	R PGUG
IKCTS	*L RETR	IS FXH	VRHEH
OMDIT	Y V S IV	0 TGZ J	W V J S J
NPFOI	CWTOW	N I H $\mathrm{O}^{\text {K }}$	X WKTK
*ARGNO	DXINX	40 JUH	Z X M M
BVHAN	FZOAZ	BNKEP	Q 2 POP
LW J B A	GQ $\mathrm{NBQ}^{\text {Q }}$	*LAMS R	UQRNR

Fig. 48.
The selected generatrices (those marked by asterisks in Fig. 48) are assembled in columar manner:

$$
\begin{array}{llll}
A & L & L & A \\
R & R & A & N \\
G & E & M & E \\
N & T & S & F \\
O & R & R & E
\end{array}
$$

Fig. 49.

The key letters are sought and give the keyword SOUP. The plain text for the second message is now known, and by reference to the capher text and the primary components, the keyword for this message is found to be TIME. The complete textx are as follows

Fig. 50.
45. The case of identical messages enciphered by keywords of different lengths. - a. In the foregning case the keywnrds for the two messages, although different, were identical in length. When this is not true and the keywords are of different lengths, the procedure need be only slightly modified.
b. Given the following two crypt ograms suspected of containing the same plain-text enciphered by the same pramary components bute with different keywords of different lengths.

Message 1.

Y L F F	PHXGC	EXTzL	A M BKI	BYL2E
LFEIL	BHNZ	UWNXS	20 RVK	B G L L
PS LPF	IHKFH	Y Y X U T	2 FHWL	Y XADK
ODLGL	I 2 S S	I LXNZ	LW L K F	HGOUW
1 A				

Message 2.

AMTUK	M FGFH	UNNNT	RロA HV	AGBNS
$K \& G B B$	NNOSD	BQGKH	S IMD J	DFYDZ
FHFMC	VGVDX	FMKFA	$X \mathrm{CNVF}$	LOYRC
m J B DU	TSEIO	DTYYX	AFBVD	XK FR L
F N				

․ The messages are long enough to show a few short repetitions which permit factoring. The latter discloses that Message 1 has a period of 4, Message 2 a period of 6 letters. The messages are superamposed, with numbers marking the position of each letter in the corresponding period, as shown below:
$12 \begin{array}{llllllllllllllllllllllllll}1 & 4 & 2 & 2 & 4 & 2 & 4 & 4 & 2 & 2 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 2 & 2 & 3 & 4 & 1 & 2\end{array}$
 No. 2-A $\ln T \mathrm{U} K$ NG F GYUNNNTR WAHVAGBNSKAGBB 1234561234561244561234456123456
$\begin{array}{lllllllllllllllllllllllllll}3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 1\end{array} 2$ No.1-BHNZFUWIXSZORVKBGSLJPSLPFIHKFH

1234561234561234561234561223456
 No.1-Y Y XUTZFHWIYXADKODLGLIZSWSILXNZ No.2-TMKFAXCNVFLOYRCMJBDUTSEIODTYYX

123456123456123456123456123456
341234123412
 No. 2-A F B V D X K F R L F N

123456123456
d. A table of "secondary alphabets" is now constructed by distributing the letters in respective lines corresponding to the 12 different superimposed pairs of numbers. For example, all pairs corresponding to the superimposition of position 1 of message 1 wath position 1 of Message 2 all distributed in lines 0 and 1 of the Table. Thus, the very first superimposed pair is I; the letter A is inserted in line 1 under the letter A
I. The next ${ }_{\text {I }}^{\text {I }}$ pair is the 13 th superimposition, wath $\mathrm{N}^{\text {j }}$ the letter N is inserted in line 1 under the letter T, and so on. The completed diagram is as follows:

Fig. 5l.
Q. Tnere are more than sufficient data here to permit of a complete reconstruction of the primary component, which $1 s$ found to be that besed upon the keyword QUESTIONABLY.
f. The plain text and the keywords for both messages may now be found very easily. They are shown belowt

STAR	STAR	STAR	OCEANS	OCEANS
I Y L F	W NXS	A DKO	AMTUKM	C V G V D X
E NEM	PSHA	I B L Y	IN EMYH	OLDFOR
FPHX	20 RV	D L G L	FGFHUN	FmK FAX
Y HAS	VEDU	LONG	ASCAPT	ANHOUR
G C Ez	K BGS	I 2 SW	N NTRWA	CNVFLO
CAPT	GINA	ERRE	UREDHI	ORPOSS
T 2 LA	LJPS	S I L K	HVAGBN	Y R CM J B
URED	N D C A	QUES	LLONET	I BLYLO
M BKI	LPFI	N ZLW	S K A GBB	DUTSEI
H I L L	NHOL	TREE	TOONEO	NGERRE
B Y L Z	H K F H	LK FH	N NOSDB	ODTYYX
ONET	D FOR	N FOR	URTROO	Q U ESTR
ELFE	Y Y X U	G 0 U W	Q GKHSI	AFBVD F
WOON	ANHO	CEME	PSHAVE	ERNFOR
I L B H	T 2 FH	L A	M DSDFY	K FRLFN
EOUR	UROR	NT	DUGINA	GEMENT
N 2 F U	W L Y X		D 2FHFM	
TROO	POS S		NDCANH	

Fig. 52.

46. Concluding remarks. - The observant student will have noted that a large part of thas text 18 devoted to the elucidation and application of a very few basic principles. These principles are, however, extremely m portant and their proper usage in the hands of a skilled cryptanalyst makes them practically indis'pensable tools of his art. The student should therefore drill hamself in the application of these tools by having someone make up problem after problem for him to practice upon, until he acquires facility in their use and feels competent to apply them in practice whenever the least opportunity presents itself. This will save ham much time and effort.

[^0]: 1 French terminology calls this the "double-key method", but there is to Iogic in such nouenclature.

[^1]: 1 It is to be understood, of course, that cipher alphabets with single equivalents are meant in this case.

[^2]: 2
 The frequency with which this condition may be expected to occur can be definitely calculated. A discussion of this point falls beyond the scope of the present text.

[^3]: 1
 It should be clear that since the key word or key phrase repeats itself during the encipherment of auch a mesaage, the plain-text word upon whose assumed presence in the message this test is being based may begin to be enciphered at any point in the key, and continue over into its next repetition if it is longer than the key. When this is the case it is merely necessary to shift the latter part of the sequence of determined key letters to the first part, as in the case noted: LCORPSSIGN ia transposed into SIGH...ICORPS, and thus SIGNAL CORYS.

