TO: . Mr. Friedman
FROM: Mr. Snyder, R/D 3501
SUBJECT: SUPERFLEX

1. I am forwarding the material on SUPERFLEX, about which I telephoned you the other day, so that you can get a full picture of the background actions since the original proposal in August 1946, for study as your own schedule permits.
2. I understand that results of recent field testing of the " 507 " reveal, among other things, difficulties due to variations in the length of electrical paths through the rotors. This will certainly influence the engineering evaluation of SUPERFLEX. The seriousness of this trouble, and the likelihood of an eventual solution should be re-evaluated if cryptographic evaluation of SUPERFLEXX indicates that it is worthy of serious consideration.
3. I would appreciate your comments as to the potentialities of this system, apart from engineering considerations. Particularly what possibilities there are in one of its small embodiments.

Incl:
SUPERFLEX File

Snyders propoool is essentitlly a brute force pollution. Tne miltiplicity of plugging oflughrouds conved entrill an engurenny problem and practicroloperatimed proplem we need mose ungenious ideas which are eary to songmea and peente a yet plonite the ecunity of thomans of pluggable leads.
of pergs Shuelach

Dispatch
NSA-R/D
MALL ROOM

1954 SEP 28300

BY

15 September 1952

MEMORANDUM

TO: Dr. Kullback
FROM: S.S. Snyder
SUBJECT: SUPERFLEX

1. You may recall the time in 1946, when I developed the idea and the suggested embodiment for the cryptographic device called SUPERFLEX. It was born of a desire for a device which would thwart the classic methods of entry into wired rotor systems, namely, either by "stripping" one rotor at a time, or by dividing the machine in half. Such methods are possible primarily because, in the classic rotor maze, current entering at a given point follows a path through a series of rotors in turn and always in the same order. My proposal varies the point of entry, the order and the number of rotors in the path, according to change of setting and also according to plain text entry point. The method of accomplishing this includes, in the most likely embodiment, the use of printed circuit "cards" as a means of varying the machine setup or specific key. Possession of the machine, the rotors, and the cards would not constitute a compromise, without knowledge of the selection of cards and order of assembly in a specific key. In fact, it is possible, subject to verification by security study, that clear indricators could be used for rotor settings.
2. Under the then Projects Section, CSGAS 76C, a certain amoint of study was devoted to this. A handtester was put together using SIGABA baskets and STGHEK pluggable stators; with this it was possible to simulate various plugging setups, and much was learned about its potentialities and limitations. Also, the subsection heads all wrote comments on SUPERFLEX, and Miss Phyllis Metcalf made a fairly complete study of a representative situation. These comments and the security study are attached with te original paper and its amendments, as well as a paper by Frank Proschan on the number of paths of various lengths possible under different conditions. Dick Chiles, particularly, made valuable contributions, suggested several improvements, and helped put together the handtester. As far as I know, the idea for this device never was given enough backing to be forwarded to any higher echelons, nor were there any strong objections which would throw it out of consideration for eventual adoption.
3. Since I am still of the opinion that this device could be of potential. value, and since I am sure it does no good to be resting in my file unevaluated, I am offering it to the Agency through you, for enough research to evaluate its potentialities. I understand that the newly constituted branch 314 will have opportunity to give greater emphasis to such security studies, and it may be that this is the time and the right place to reopen this matter. I only hope that during the past six years there have not been occasions when this device could have satisfied some Agency need.
S. S. SNYDER

Procedures Branch, 351
COPX

- SEWheff

SECRET SGCURITY INFORGATION

$$
\begin{aligned}
& 351 D \text { - A胡 } \\
& \text { Mr. S. S. Snyder }
\end{aligned}
$$

4128

Superflex

1. Herewith is the folder we discussed recently.
2. Our studies on this indicate that the ideas might oasily be developed into a secure system if the various features onn be made practioal. There is, of course, a question of whethor another aystem built along more conventional designs representing the same complexity and same amount of equipnent would provice security as great as this principle. This wo were not able to answer. In my own opinion, waless a system built alone the lines of Superflex would blook solution based on known stepping of rotors, I am inclined to think that security would not be substantially greater than that from a more conventional machine of comparable complexity. Putting it another way, if the use of this principle would permit transmission of message rotor alignonts in the clear, aafely, this would be a step forward.
3. I have been at a disadvantage on this system by not knowing what the enginoers would consider praticable in terms of equipment features. This is a type of research for which all deadline jobs seem to take precedence; oonsequently, winenever we started the study of any specifio application of the system, there seemed always to be a deadino job coming up that forced this one to wait. I apologize for having so little to report.
R. A. PAGE

Head, AFSA-412B

Abe:
As per our conversation the other day, I am sending herewith a folder containing a file copy of my proposal for SUPERFLEX, together with other papers bearing on the subject. I would appreciate an evaluation of the basic theory, and an appraisal of its suitability for inclusion in an official device.

The proposal is described in the basic paper, which was in the form of a memorandum to Projects Section on 6 August 1946. Mr. Chiles, who was in that Section at the time, became interested in it, and made valuable contributions, including a suggested embodiment which is described in his paper dated November 1946. Also he was primarily instrumental in constructing a 'hand-tester' which turned out to be invaluable both for testing variations of the device and for producing cipher text for study. Sets of sliding strips can be used for this, and for detailed check of the actual rotor paths, but the process is extremely slow for mass encipherments.

A later suggested embodiment, dated 19 September 1947, introduced the idea of a 'commutating cylinder' which if engineeringly feasible, would add considerably to the security by changing stator plugging at each encipherment.

The security study included herein was made by Miss Metcalf, and is the only extensive effort along this line. Certainly other analysis is necessary to get a complete evaluation.

Thank you very much for your consideration.

SAM (signed)
S. S. SNYDER

AFSA 351D
Ext. 377 (AHS)

1. The system shich has been proposed was based on the assumption, among others, that security would be enhanced because additional items need be either captured or obtained in other ways by an enemy. Considering our present rotor systems, we may say that the folloring components of a system must be protected:
a. The key list
b. The rotors
c. The basic system.
2. The basic system, however, usually must be considered as known to the enemy. That leaves, then, only the key list and rotors to be safeguarded. If either is compromised security depends upon the continued uncompromised status of the other. Bith the addition of another component to the system, security. of traffic, presumably, would continue even after the loss of any two components.
3. It ainould be noted in this connection that if there is a loss by capture one can not be certain that all components have not been lost. If there is a compromise through espionage one must expect all components to be lost. At least, these are the safest assumptions to make.
4. There is an advantage when shipping systems to holders in having many components in a syatem. Then, if one component is lost in transit the remaining uncompromised components should assure security until replacement of the lost component can be made. One simple way of increasing the number of components in our present systems is to divide the key list into soparate parts, all parts together then being needed to operate the sjgtem. Loss in transit on one component would not necessarily endanger security. As a practical matter, compromised key $21 s t s$ can be replaced with less strain on production facilities and with less expense than can rotors or other components more difficult and expensive to produce. The frequency of changing the different components and the length of time they remain effective affeots the relative importance of the components.
5. Four rotors are recommended for the system, mainly to assist in reducing the weight and size of the machine. No motion is specified for the four rotors. Because the type of motion contributes a great deal to the security or insecurity of a system no definite statement can be made on the security of this syotem. If straightmforward predictable motion is used, even with five rotors, it seems quite probable that methods of solution can be found. In considering possible motions for the machine, thought must be given to the effeot of clear indicators, one rotor off (if this should be dangerous to security use of only four rotors will allow such a condition to arise more often than a greater number of rotors), tailing, etc.
6. The study of reflexing is, as yet, searcely begun and it seems reasonable to believe that techniques will be found for handling reflexed systems which can be applied to this system. As it stands now a considerable amount of time

CSGAS-76C (10 October 47)

and effort will b e needed to give a proper evaluation of the security of the system.
7. It would seem to be true that if a strong motion is needed for security, regardless of other factors, then most effort should be concentrated on finding a strong motion and depending on it.for the principal security safeguards.

JAMES H. DOUOLAS

CSGAS-76
COMAENTS ON SUPERFLEX

Noted. The using forces will not stand for plugging. Therefore this problem should be licked first. Secondly, much more security study must be done before this idea can be circulated.
A. I. DUREY

Cryptologic Branch

COMAENTS ON SUPERFLEX

1. The limitation on motion, sutgested in parajraph 2 d of the description, winch would insure that none of the rotors wauld be stationery for more than two successive encipherments would greatly increase the difficulty of euarantoeing a long cycle on tie machine. The limitation was introduced to suppress repeats in the cipher wilch come from repeats in the plain. Such a limitation would increase fepeota in the cipher which come from successive letters in the plain, $A B_{p}=C D_{C}$. This would happen when ever all wiseolanturned between such a plain text pair. Any further limitation of motion cuts down the number of trials the onemy cryptanalyst must make. The suegested limitation would not entirely suppress repeats witich come from consecutive repeated letters.
2. The test messages enciphered b_{j} the machine show a larse percentage of two-wheel encipherments. The following percentajea were onciphered by two wheels only:
25.5% of Test 1
33.7% of Test 2
30.0% of Test 3
24.0% of Test 4

The following charecteristics of the machine are suggested as offerino a possible statistical solution because of the number of two-wheel encipherments.

The following wieel orders are the only ones possible in a two-wheel encipherment with the machine set up as in the example.
1 and 4
2 and 4
2 and 5
3 and 4
3 and 5

The cipher text may be divided into two classes, those letters which are the output of Rotor 4 and those letters which are the output of Kotor 5. In the example 13 letters come from wieel 4 and 13 letters come from wheel 5 . If all entry points are equally possible then $3 / 5$ of the two-wheel encipherments are goine to leave the machine at wieel 4. If high frequency letters are plugged into weel 1 then this percentage will become larger. On the Dasis of frequency it might be possible to classify the cipher text as outputs of wheel 4 or wheel \bar{j} wiach will begin to eive an entry into the rachine for bombing with fewer trials.

The basis for classification of cipher text is a result of the limitation which does not allow the winel order 1 and 5 as SECRIT
(Comments on SUPERFLEX)
two-wheel encipherment. This was introduced to cut down the number of two-wheel encipherments. A ifferent set of stator pluggine which did not use one as an ontry point and 5 as an exit point might be devised to overcome the frequoney attack, which is an attack and not a solution.
3. If this machine is sujeested to fulfill Basic Military Requirements II, III or IV tho consideration of inter-commaication may become very complicated unless all three devices employ similar principles.
4. The machine would be subject to error in setting up the key whether cards or pluga were used to vary the stator wiring. Frequent changes of key would certainly not be practical.

Mary MacNeill.

27 August 1946
I sugest (a) a security study based on fixed stator wirine (which is probably what will be the case, anyway) to see what can be done about getting the wiseels and identifying them, and (b) consideration of reilexed machine, mich would permit the removal of the limitations on motion (to some extent).

DANIEL A. DRIBIN

11 September 1946

3ome improvement in tine means of "plugeing" seems to be indicated if this idea is to be useful - and I don't like the idea of fixed stator wiring. Certainly, also, the auggestion should be developed to elininate the necessity for the motion restrictions. Perhaps a simpler device including the re-entrant feature should be studied first.

Warren H. Turner, Jr.

13 January 1947

The 2 -wheel encipherment danger can be circumvented by introduction of a reflector se thet one endplate is used; of course, bridged elements are stili bighly doubtful. Plugeing is a dififculty which must be faced realistically

It should be pointed out that the idea of assembing 26 cards from a deck of 108 containinc possible printed circuita permits more flexibility than is indicated in paragraph le and Fioure 3. Slnce the choice of number and position of entering rotors (from LFS) and exit rotors (to RFS) is not fixed, these cen be varied by printing of new sets of cards. Presumably new cards would be issued at the tine new sets of rotors were sent out. This, therefore, increases further the variability, and is an additional advantage over the plugisine method mentioned in paragraph iE which would heve 108 stator wirings built into the machine and only allow variation of plugging.

lifary Neely Rosebro

Research on the basic security of simple reflexed cipher syetems has pointed up the fact that the first step in any solution effort is to separate those elements whose encipherments involve one channel (one trip throuch the maze) from those whose encipherment involves several channels. horeover any use of a reflexed element requires specific assumptions as to the number of trips through the maze. In the licht of the above study SUPERFLEX solution wouli require an effort to separate the olements into classes accordins to the specific wheel order (i.e., wheels 1-2-2-3 etc.) for the elements beinc used. This effort would be a major one except possibly for the 2 -wheel encipherments and the piysical difficulty of chanising the stators.

The fact that in 5 to 10% of the cases a specific two-wheel encipherment may be involvery a wedge for solution if the identification of which elements are of this type is possible.

If wheels 4 and 5 are made fairly fast moving wheels in order to complicate this identilication then it may be possible to set wheels 4 and 5 and then wheels 2 and 3 in turn b_{j} assumptions made an encipherment by wieels 2 and 4 and verified by 2 and 5 encipherments. The two-wheel encipherments. Addition of anotier wheel or two would make it possible to guarantee that no two-wheel encipherments occur.

Unless the stator "cards" are changed frequently the insecurity of the two-wheel encipherments will enculf the basic security advantages of the "superflexing".

Perhaps a 7 -wheel device as sugeested below which ellminates 2-wheel encipherments would provide more security. This device sacrifices the variablity provided by the cards for the assurance

(Comments on SUPERFLEX)

that the minimum 3-wheel encipherments will occur in less than 11, of the cases. Moreover the security due to variability of the cards will be partlally reealned by the possibility of more freguent changes of the atators.

In the description below the inputs of stators are described as being connscted to the outputs of stators by multiple position switches instead of cerds. $1 . \theta \cdot$. if the input of stator C is connected to the output of stator A_{1} then the enoipherment would have involved wheel 2 and then wheel 1 in that segment of its path.

Let 3, 4, 5 be the most rapia whoels - for example let 4 be fast and either 3 or 5 move every time. Let successive wheels move in opposite directions. Let the cards be replaced by $52-$ six position switches and a daily key list furnish the settings of these switches. (Wine key list coula be prepared so tiat for high frequency letters the stator A be connected only to A or B thus guaranteeing encipherments by a minimum of 4 wheel on high frequency letters.

The wirine task on the chassis of any sUPERFLEX will be a eigantic production problem and therefore very strong recommendations will have to be made before it will be adopted. Devices of comparable security.

I like the basic contribution winch this device makes to cipher machine technology, but believe it would be better if certain practical defects or difficulties could be eliminated. One is the complerity of the internal wiring job, which is apparently a neccessary corallary to the inclusion of the feature of plusgable stators. Anotier possible criticism is the fact that witinin any key period (same stator olugeing) there is a consistent entering rotor essociated vith eack plain letter, and likewise a consistent exit rotor associated with each cipher letter. The following variation in the design is offered as a means of oliminating both, and also, in line with Er. Erskine's auggestion, it insures at least a threemrotor encipherment for every plain-text charactor. A further advantage is that the necessity for inserting the twenty-six cards in slats io ciange the stator plugging is aliminated, this change being effected merely by substituting a new plastic cylinder for the one formerly in use, as described below.

The cipher maze of the machine would consist of the following elements:
(1) Seven rotors (preferably of the plastic printedcircuit type). These rotots would be in the form of rings approximately $3^{\prime \prime}$ or $3^{\prime \prime}$ in diameter, depending on the number of contact points, with a $\boldsymbol{e}^{\prime \prime}$ hole in the center of each instead of the usual $3^{\prime \prime}$ or $3 / 8^{\text {n }}$ shaft nole.
(2) Eicht stators separating the rotors, of special construction as shown in Figure 1 .
(3) A cylinder, $2^{\prime \prime}$ in diameter and equal in length to the length of the rotor-stator assemoly. This cjlinder will have circuit paths printed on its surface which serve to inter- connect the input and output contacts of the stators (see Figure 2), effecting the same result as the stator wirings of sUPirfLix. In addition tinis cyinder serves as the shaft aoout which tine rotors move and itself is moved independently (possibly opposite in direction to the movement of tiae rotors). This would have the effect of not only shifting the points of contact of plain and cipher letters with each encipierment, but also of adding to the variaoility which results from the basic idea of stator plugeing.

As shown in E ligures 2 and 3 , stators A, \mathcal{B}, C, and i are inter-connected by the circuit patis printed on tine rotating cylinder, and in the same way stators E, F, G, and H are interconnected. This arrangement is merely an adaptation of Dr . Erskine's suggestion, and if' the circuit paths for each set of four stators are arranged so that at least one rotor from the

(Comments on SUPERFLIEX)

group 1, 2 and 3 and one from the group 5, 6 and 7 is used in every path (rotor 4 being used every time), a minimum three-rotor encipherment is assured for each plain-text character. It will be noted that the cylinder may be cut in half and each half moved independently, if this is thous'ht desirable.

If the above limitation is used to assure at least a threerotor encipherment, there are eigkteen possible circuit arrangements for each set of four stators. All eighteen circuits are shown on the cylinder in Figure 2. If the same tolerances which were used in planning printed rotor circuits are maintained, all of these paths can be easily arranged on a cylinder $2^{\prime \prime}$ in diameter with the rows of contact points spaced $\frac{2}{4}$ apart.

J. R. Chiles

An exhaustive socurity study has not been made of all emDodiments of SUPERFBEX. Such methods of solution as could be devised and carried througin by hand have been tried for the simplier embodiments of the machine. No method of attack 1 a at hand for tho most comolicated version of SUPERFLEX which includes mixed level stator wiring. A detailed report. of the embodiments studied, the materials used, and the results obtained follows.

I Oriainal Emoodiment
A. Doscription.

1. 5 Hebern type rotors with 26 points each
2. Orange type motion - cascading multiple notch
3. 6 stators.
a. Variable by pluğing (26 point IBM facks) or printed circuit cards.
b. No mixed levels in gtator wiring.
c. Iimitations.
(1) Minimum 2-rotor encipherment ingured by designating 3 rotors as entrance rotoss and the remaining 2 as exit rotors.
(2) 5 possible 2-rotor enciphermenta (1-4, 2-4, 2-5, 3-4, 3-5)
B. Frequency Counta
4. 200 letters of matching plain - cipher
a- Plain frequencies
(1) 32 ocourrences of X (word-spacer)
(2) 27 occurrences of E
(3) 0 occurrences of K, Q, Z
b. Gipher frequencies
(1) 12 occurrences of D, E to
(2) 3 occurrences of s
(Studies of SUPERFLEX)
(3) no.blanks.
c. Number of rotors involved
(1) 51 2-rotor encipherments
(2) Average encipherment was through 5 rotors
(3). liaximum encipherment was 22 rotors
5. Same as B 1 above but with different motion pattern.
a. Plain freyuencies - see above
D. Cipher frequencies
(1) 15 occurrences of S to
(2) 2 occurrences of R
(3) no blanks.
c. Number of rotors involved
(1) 67 2-rotor encipherments
(2) Average enciphorment through 5 rotors
(3) inaximum encipherment was 23 rotors
6. 100 encipherment of " E^{18} wich entered fast moving rotor a. Gipher frequencies
(I) 8 occurrences of is to
(2) 1 occurrence of D, P, Z
b. Repeats
(I) no consecutive oceurrence of identical encipherine paths
(2) 4 cases of consecutive cipher repeats dorived by different paths.
7. 100 encipierments of " R " (entering slowest entrance rotor)
a. Cipher frequencies
(I) 12 occurrences of 0 to
(2) 0 occurrence of C, W, z
b. Reperts
(1) 1 pentograph ($К К K K K)$ due to identical onciphering paths occurring consecutively and caused by no motion of enciphering wheels involved.
(2) 5 trigraphs as above
(3) 9 digraphs as above
C. Attempts at Solution
8. Given motion, setting, order, and wiring of rotors, an attempt was made to recover stator wiring with 200 letters of cipher toxt.
a. Sethod: Plains "E" and "X" were assumed to enter Rotor 3. Every cipher lotter was assumed to have come from plains E and X and was decipiered through every possiole combination of 2 wioels. A table was kopt of the stator wiringe inplisd by each of these possible encipherments. Analysia of confirmations and contradictions in this table yielded 13 correct wires and one incorrect wire in statora $D, 2$, and F. Deciphermenta through tiese estabished wires geve insufficient clues for cribbing in additional plain text.
b. An attempt was made to recover plain text by removing rotor 5, wiere wires derived in (a) above made it possible, and deciphering thruugh rotors 2 and 3. An attempt to asaign plain text letters to the entrance points of these wheels on the basis of frequencies gave insufficient data to warrent continuation of such an approach.
9. Given setting, motion, order, and wiring of rotors. An attempt was made to recover stator wiring with 200 letters of matchod plain-cipher.
a. inetinod - All stator wiring implied by possible z-rotor encipherments was tabulated. Confirma-
tions were sufficient in 34 cases to accept the derized wires as a basis for obtaining additional ones from 3-rotor encipherments. All stator wiring was recovered. (It is probable that this could not have been accomplished with 200 letters of matched plain-cipher from a machine with simple metrio motion if there were no turnover of 3 rd , 4th, and 5th whoels.) A tabulation of wirine implied by all possible 2 -rotor encipherments of the same 200 matched plain-cipher pairs with rotors set incorrectly gave results with sufficient contradictions to reject the setting.

II Second Embodiment

A. Description

1. 5 fiebern-type rotors (26point)
2. S1mple metric motion - 1 notch per wieel.
3. 6 stators (same as in Orisinal cmoodiment)
B. Frequency Counts
4. 255 plain-cipher pairs
a. livember of 2 -rotor encipherments:
(1) 17.9% before turnover of 3rd wheel.
(2) 61% (in only 26 pairs) after 3rd wheel break.
b. Plain-cipher constatations show break-point approximately. It was possible to deterinine to a large extent which plain letters were enciphered through rotor 1 and any combination of rotors 1 , 2, 3, 4, 5; whic'a were not enciphered through 1; and wich were not enciphered through 1 or 2.
C. Attempts at Solution
5. Given 10 consecutive cipher alphabets, known rotor order, setting, wiring, and simple metric motion with turnover of 2nd wheel only between tise 5th and 6th alphabets. An attempt to recover stator wiring on the basis of 2 -rotor encipherments was made. 36 correct stator wires were recovered. These produced insufficient decipherments in a message to sugeest
(Studies of SUPERFLEX)
cribbing or recovery of additional stator mires, even when rotor wirinc, motion, and setting of the message were known.

III Third Embodiment.
A. Description

1. 10 Heborn-type rotors (26 point Sigrotes)
2. Simple metric motion - (Some sample encipherments made with simple motric motion in 2 sets of 5 rotors each.)
3. 10 stators
a. iAfxed-ievel wiring.
b. No variation of stator wirins.
c. Minimum 2-rotor encipherment guaranteed by having plain pass through rotor 1 before enterins stator A wiere variation in wheel order is initiated; by having no conhection from stator A direct to cipher output.
B. Observations
4. Given 10 messages in depth - show that frequencies between breakpoints of 2nd fast wheel can be exploited as well as column frequencies to derive plain text.
5. Given 2 measages ith same plain and in depth on all but 6th wheel. The sample shows that wheel 6 was involved in 193 of the 327 encipherments (60.6席. This would seem to imply that reading text by setting and deciphering on fewer than all ten wheels might be impractical.
6. Given 25 cipher alphabets and all elements of the machine except stator wiring. No method of solution devisod.

IV Fourth Embodiment
A. Description

1. 4 Iebern-type rotors (26 point)
2. Orange type motion cascadin multiple-notch. (In
```
(Studies of sUPNRINM.)
```

final version porhaps notch pattern could be permanently attached to wheels. Delayed cycle-motion suggested by Dr. Jrakine was considered but it may be unnecessarily complicated)
3. 5 stators
a. hixed levels
b. Variable by printed circuit cards changing plugboard connections. Ithe plugboard would have 13×20 bubs for wires from the atators. Ten circuit cards would be pulled from a deck of, say, 50 and placed on the face of the plugboard accord$1 n_{j}$ to the kej. Each card would connect two columns of ij3 kubs in the plugboard. Approximately 10^{15} trials zould be necessary to recover stator card assembly.
c. Limitations
(1) ilinimum 2-rotor encipherment (enter rotors 1 and 2; exit rotors 3 and 4) or
(2) Minimum for final version is l-rotor encipherment.
B. Attempts at Solution
2. Given 200 letters of matched plain-cipher; known rotor wiring, setting and motion. No method of attack for recovering atator wiring was suggested - (Dxinaustive trials about 10^{15})
2. Given matched plain-cipher, rotor wirins and notch patterns, and stator wiring. An attempt to set rotors for a message was made. To split the machine and set two rotors initially, 3 , a fast and exit rotor, and 1. 2nd fast and entrance rotor wero chosen as they were the only two completely independent of other rotors with respect to motion. All plain-eipier constatations with plain entering rotor 1 and cipher leaving rotor 3 were solected from the crib; 34 crib pairs yielded 13 such constatations requiring two correct 2-rotor encipherments for a "stop" when trying the 13 pairs, B ives about 38 random stops per wile ord order and 25% chance of missing the correct stop entirely. Nherefore, since the number of trials for setting four wineels simultaneously is no greater than for sotting two at a tino, and crib required
would undoubtediy be sinorter, splittinc is a less practical and less reliable method of wheel aetting.
3. A deck of 50 cards was made in order to determine time required for canging stator cards according to a key Avirase time for withdrawing 10 and inserting 10 other cards was less than 3 minutes.

Conclusions:
I. A small, easily operated, and secure 3 UPERplid is practical in orinted circuit cards can bo developed to vary stator wiring. initiout variable stators the mixed level embodinent would be secure until compromise of stators; thereafter solution of wheel order and settinj would be comparable to that for a liobern-type machine with the same number of rotors and the same type motion. No conclusions were reached conceraing comparable aifficulty of solvinis rotor wirine.

II: Assuming development of printed circuit cards, issuing a dock of 50 such cards of wisich 10 could be selected for a dally koy, would plaos solution by means of exhaustive trials beyond any presant means. So otiar solution has been lound for mixed level stators. Bince stator cards can be changed in 3 minutes, daily ciange is not impractioal.
III. Impracticability of solvin stators removes necessity for complicating other elements oi tio maciine. It is conceivaile that in the fourth embodiment motion notch patterns be permanently fixed in the rotors and only a settable alphabet fing be added to allow senaing indicators in the clear - provided a days traffic is not sufficiently heavy to allow readine depths on frequencies alone. linere should be sufficient motion to suppress plain-text characteristics evident from successive encipierments detween wilch t.ere is no motion. Present opinion is that something approximating Orange-type motion would be necessary.
IV. For use in lower echelons a less secure machine could be made to have a Lebern maze with separators varied dally. An adapter which would make this intercommunicable with SUPERFLiX should be feasible.
hary neely rusebro M.A.C. Jubsection

MARY MacNEILL Cryptoprapaic Plan Subsection

SUBJECT: SUPERFLEX Commatating Unit

TO : CIC, Projects Section

1. One possible cryptographic weakness of the SUPERFLEX embodiment mploying ten printed circuit slides, is suggested by the fact that during an entire daily key setup, any given plain (or ciphor) letter remains in direct contact with an associated entry (or exit) point on a particular rotor. The modification proposed herewith is designed to eliminate this weakness, by varying the "plugeing" sotup during the enciphorment of each message, in an unpredictable manner.
2. Instead of having the spring contacts of the reflexing plugboard arranged along a plane surface against which the set of ten printed circuit slides are to make contact, let the spring contacts be arranged in ten pairs of rows around the surface of a bakelite cylinder (Figure l). Let the plugboard slides be inserted in slots in the inner face of a "sleave" (Figure 2) which is designed so that points on thése slides make good electrical connoction with the spring contacts of the cylinder. Motion bumps are provided on the outer surface of the sleeve, to effect its motion; after any step of the sleeve around the cylinder, a complete shift of the ten slides with relation to the spring contacts will have been made. Provision should be made for this motion to be related to the motion control schene for the rotors themselves, so that it,is fairly irregular, and would vary according to different daily koy setups, notch rings, etc: Assuming that printed circuit slides can be made approximately the same size as in the original proposal, the whole enciphering process oan probably be accomplished within a simple unit similar to that shown diagramatically in Figur 3.

> sleeve
3. In the design of the plugboard ydeg shown in Figure 2, the slides are shown as having a slightly curvod face and edges cut at an acute angle. It is folt that this type of slide would lend itself reasonably well to manufacture on a mass-production basis. A process for making printed circuits has been perfected commercially, using steatite; it is felt that this material would be aatisfactory for this purpose, One of the best reasons for using that material is the fact that circuite printed on it have shown remarkable resistance to abrasion.
4. Consideration has been given to the idea of using more rotors to effect practically the same result. Such a plafn, for example, might omploy nine rotors and accomplish "superflexing" to approximately the same extent as the proposed four-rotor version with rotating plugboard ring. This wes rejected for the following reasons:
a. One of the powerful arguments for a device like SUPERFLEX has been the fact that a stock of fifty to one-hundred printed-circuit slides would be on hand, from which ten would be selected for the daily key setup.

This was folt to be practical bacause such slicies werw considered readily produoible in large quantities. Also once distributed, they mould not have to be reissued, and in fact would hardly have to be classifled secret. But preparation and issue of the corrusponding numbers of rotors to each holder would probably be prohibitive in exponse and bulk.
b. The use of rotors to accomplish the ghift of unoiphoring path from letter to lettor is probably waaker cryptocraphically than the use of a cylindar with slides. The zwason is that, ubinc rotors, successive letiore will related in their path because they still contact points on the same rotor. Using the cglinder, with its rotating sleeve, however, each motion brings into position a now of reuit.
5. It is folt that uas of the device as proposed would be proof in case of capture of the dovice, provided specific koys are not compromised. It is recominonded that tiop plan of wifing the aprine contacts be such as to guarantee a milnmum noiphering path of two rotors.
6. It is also to do kapt in mina that 3UPanflex can be fairiy easily destenned so that its plugging setup, in offect, be altered to convert it to a almule jilaborn davice with no "roflaxing" or "bridgyng". This might be desirable if it becomes necessary to render it comanicable with a device in a loner echelon which is a sinpis lisbom type nachine.

CIC, Cryptographic Plan Subsection

Fig. 1.
Commutating Cylinder,
Showing Paired Rows of Spring Contacts

Commutating Sleeve (En dView).
Showing How Spring Contacts of Cylinder - Make Electrical Connection with Points on Slides

Fig. 3.

TDAAS 76-6 26 Septoraber 1947

1. Your Botor Suporflax.

Consider a four rotor Superflex (see Mir. Chiles' peiger of November 1946 on the Superfiex)

where the gath JFS to RFS is imposeible but any othor path is poseible. hast 2s the probability that the path of an enciphersent goes tirough one rotor, two rotors, three rotors, to?

Let us first detarnine the relative proportion of Wires from LPS to Kotors 1, 2, 3, and 4, and fron fotor 2 to Rotor 1, 2, 3,'4, and LFS, etc. io know thet, 24 S may bo mired to $1,2,3$ or 4 , and, we assume, with equal probability. Hance we consicier $\frac{2}{3}$ of the points of LFS go to Rotor 1 , $\dot{\text { w }}$ to hotor 2, t to Rotor 3, and to Rotor 4. How Rotor 1 may be wirad to any of the remaining $3 / 4$ of fotor 1 , any of the remaiming $3 / 4$ of totor 2 , any of the remaining $3 / 4$ of Rotor 3, any of the remaining $3 / 4$ of Rotor 4 , and to any of m3. Eence we ausum the 26 points of flotor 1 mre wined to fotors $1,2,3,4$, EFS in sam proportions as liated above, 1.e., 3/16 to llotor $1,3 / 16$ to liotor 2, 3/16 to dotor 3, 3/16 to lotor 4, and $4 / 36$ to KFS . 3y this rasoning we prepare the following table.

WHAB 76-i (16 Saptember 47)

				tars		
		1	2	3	4	AFS
	LPS	1/4	1/4	1/4	1/4	0
	1	3/16	3/16	3/16	3/16	1/4
Leavas	2	3/16	3/16	3/16	3/16	1/4
	3	3/16	3/16	3/16	3/16	$1 / 4$
	4	3/16	3/16	3/16	3/16	1/4

Table of Probabilitiee

This table masns that the probability of current leaving Lotor 2 goine into Rotor $4133 / 15$, going to $2 P S$ is $1 / 4$; oto. Incidantiy, in our calculations we make the approximation that the probability of a path from any rotor to any other rotor (or to R(SS) remains unchanged at each stage. This is not strictly true, siace ae we fill up nore and more points on the rotoze, the probabilities of pathe change; but the orror will be saall.

Let us denote by $\mathrm{P}(1)$ the probobility of the curreat leaving the machine after passing through i rotors, Thon

$$
\begin{aligned}
& P(2)=1 / 4 \\
& P(2)=3 / 4 \cdot 1 / 4 \\
& P(3)=3 / 4 \cdot 3 / 4 \cdot 1 / 4 \\
& P(1) \cdots \cdots \cdots \cdots \cdots \\
& P(1)=(3 / 4)^{1-2} 1 / 4
\end{aligned}
$$

Some values are listed below

$$
\begin{array}{ll}
P(1)=.2500 & P(6)=.0593 \\
P(2)=.1875 & P(7)=.0445 \\
P(3)=.1406 & P(8)=.0334 \\
P(4)=.1055 & P(9)=.0250 \\
P(5)=.0791 & \text { to. }
\end{array}
$$

molas 76m(16 Saptamber 47)
To determine the mean length of path, $E(i)$, we sum $i \cdot P(1)$. Ene

$$
E(1)=\sum_{i=1}^{104} i P(i)
$$

Lat us us* the infinite sum instead - the difference will be negligible.
Than

$$
\begin{aligned}
E(1)= & \sum_{i=1}^{\infty} 11 / 4(3 / 4)^{i-1}=1 / 4 \sum_{i=1}^{\infty} 2 f^{1-1} \text { where } f=3 / 4 . \\
& \int E(1) d f=1 / 4 \sum_{i=1}^{\infty} f^{i}=1 / 4\left[\frac{1}{1-f}-1\right]
\end{aligned}
$$

Hence $\quad \frac{d\left(\int E(i) d f\right)}{d f}=2(i)=1 / 4(1-f) 2=1 / 4 \frac{1}{(1-3 / 4)^{2}}=40$
Hance $E(i)=4$ approximately.
To got $\sigma(i)$, the standard deviation, we first determine $E\left(i^{2}\right)$. By definition

$$
\begin{aligned}
& E\left(i^{2}\right)=1 / 4 \sum_{i=1}^{\infty} i^{2} f^{i-1} \text { where } f=3 / 4 \text {. } \\
& \int E d f=1 / 4 \sum_{i=1}^{\infty} f^{1}=1 / 4 \sum_{i=1}^{\infty}(i+1) f^{i}-1 / 4 \sum_{i=1}^{\infty} f^{i} \\
& =1 / 4\left[\sum_{i=1} i f^{i-1}-2\right]-1 / 4\left[\frac{1}{1-f}=1\right] \\
& =1 / 4\left[\frac{1}{(1-f)^{2}}-1\right]-1 / 4\left[\frac{1}{1-f}-1\right]=1 / 4\left[\frac{1}{(1-f)^{2}} \frac{2}{1-f}\right] \\
& \frac{d((E d f)}{d f}=E=1 / 4\left[\frac{2}{(1-f)^{3}}-\frac{1}{(1-f)^{2}}=1 / 4[2.64-16]\right. \\
& \mathbf{s (1 2)}=28
\end{aligned}
$$

Hence

$$
\sigma^{2}=E\left(i^{2}\right)-[E(1)]^{2}=28-16=12 \quad \sigma=3.464
$$

NDU: 76m (16 Eeptanber 47)

Since the auries was not infinite wo aroy the 64 and conclude that $\sigma=3.4$ approximatnly.

2. Pive RIotor Superflex.

Now conaidor a five roter Superilex dovice with the following rostric-
tions:

1. LIS may be Mroa only to motors 1,2 , or 3.
2. Hotor 1 may be wred only to $2,2,3$, or 4 .
3. Fiotorn 2, and 3 may be wired to $1,2,3,4$, or 5.
4. Jiotory 4 and 5 , may be wired to any rotor or RIS.

保th tinese restrictions we mey sot ay a table of probabilities of current out of Lifs or iotor 2 going into lotor j or His, es before.

	2	2	3	4	5	505
$L / 3$	$1 / 3$	$1 / 3$	$2 / 3$	0	0	0
1	$2 / 9$	$2 / 9$	$2 / 9$	$1 / 3$	0	0
2	$4 / 27$	$4 / 27$	$4 / 27$	$6 / 27$	$1 / 3$	0
3	$4 / 27$	$4 / 27$	$4 / 27$	$6 / 27$	$1 / 3$	0
4	$4 / 54$	$4 / 54$	$4 / 54$	$1 / 9$	$1 / 6$	$1 / 2$
5	$4 / 54$	$4 / 54$	$4 / 54$	$1 / 9$	$1 / 6$	$1 / 2$

As before, we make the assumption that theo probabilitios remain unchanged at various atages of tha path.

Lot us now define this additional degopol:
$P(j, i)=$ probebility that current entere Robor j after it has been through 1 rotore.

Then wo may set up recursive aquations as follows Current may onter firs from iotor 4 or lotor 5 wh probability $1 / 2$ each. Steted symbolically:
ataki 76-c (16 september 47)

$$
P(i)=P(4, i-1) 1 / 2+P(5, i-1) 1 / 2
$$

Similarly, current may anter fotor 5 fron fotor 2 with probability $1 / 3$; from futor 3 with probability $1 / 3$, from inotor 4 with probability $1 / 6$, and from Rotor 5 with probability $1 / 6$. Henae:

$$
P(5,1)=P(2, i-1) 1 / 3+P(3, i-1) 1 / 3+P(4,1-1) 1 / 6+P(5, i-1) 1 / 6
$$

Bimilarly $\quad P(4, i)=P(1, i-1) 1 / 3+P(2, i-1) 2 / 9+P(3, i-1) 2 / 9$

$$
+P(4,1-1) 1 / 9+P(5,1-1) 1 / 9
$$

For $1>0$

$$
\begin{aligned}
P(3,1)= & P(1, i-1) 2 / 9+P(2, i-1) 4 / 27+P(3,1-1), 4 / 27 \\
& +P(4,1-1) 2 / 27+P(5, i-1) 2 / 27 \\
& P(2, i)=P(1,1)=P(3, i)
\end{aligned}
$$

By the use of those recuselve equations build un the following
table.

	$P(1,4)$	$\mathrm{P}(2,1)$	P(3,i)	$B(1,1)$	$P(5,1)$	$P(i) \quad \sum P(i)$
0	. 3333	. 3333	. 3333	0	0	0
1	. 1729	. 1729	. 1729	. 2592	. 2222	0
2.	. 1253	. 1253	.1253	. 1880	. 1955	.2407
3	. 0934	.0934	. 0934	. 1.401	.2475	. 1918 -
4	. 0697	. 0697	. 0697	. 2045	.1102	.1438
5.	. 0521	. 0521	. 0521	. 0781	.0823	.1074
6	. 0389	. 0339	. 0389	. 0583	. 0615	. 0802
7	. 0291	. 0291	. 0291	. 0436	.0459	. 0589
8	. 0217	. 02217	. 0217	. 0326	. 0343	. 0448 -. 6238
9	. 0162	. 0162	. 0162	. 0243	. 0256	.0334 +
20	. 0121	. 0121	. 0121	. 0181	. 0191	. 0249
11	.0090	.0090	. 0000	. 0135	. 0143	.0156
12	. 0067	. 0057	. 0067	. 0102	. 01.06	. 0139
13	. 0050	. 0050	. 0050	. 00775	.0079	.0104-. 9697
14	. 0038	. 0038	.0038	. 0056	. 0059	.0077
25	-					. 0057 +

$$
\begin{aligned}
\text { Average } & =5 \\
\sigma & =3.3
\end{aligned}
$$

REXPMDEA 4146724

Wans 76-6 (16 Septomber 47)
Pio thon calcuzate thin moan lensth of path and the tandard dovietion directiy from the valuos of $P(1)$, getting

$$
\begin{aligned}
\text { man } & =5 \text { rotors } \\
\sigma & =3.3 \text { rotors }
\end{aligned}
$$

FIRAK FHDSCHAN
Cryptologic Hesearch siubsection

REF ID:A4146724

SUPERFILEX SOLUTION, GUARANTEED THO ROTOR ENCIPHERMENL

Given: A. 1000 letters of matched plain and cipher text, Figure 1.
B. Hotor wirings and order of rotors:

I ABCDEFGHIJKI 込NOPQRSTUVWXIZ IVOKCUGPFHQETDLZXRBMYJSAWN

IIABCDEFGHIJKLMNOPQRSTUVWXXZ OQPEUJTBFIZLGMHRWDNCKXAVSY
III ABCDEFGHIJKLMNOPQRSTOVWXYZ JITHUXMQENDTZYABLVSPKGRCFO

ABCDEFGHIJKLMNOPQRSTUVMXYZ KNHPDLMFYZUVQBRTCWIAGOKSJE
C. Notch patterns:

$$
\begin{aligned}
X & =\text { Effective Notch } \\
& =\text { No Effective Notch }
\end{aligned}
$$

D. Initial setting of rotors: A.HFS
E. Plugboard: Figure 2.
F. The plugging was such that each letter of plain was guaranteed to be enciphered through at least two rotors. C.C.M. type motion was used in enciphernent with rotor IV the fast rotor.

Result: The notch rings were set and the plugging was recovered.
Method of Solution: The matched plain and cipher was written out on a Width of 26 (Figure 1) because the fast rotor moved once for each encipherment. Since there were 16 notches on each rotor, rotor III moved 16 times for each complete cycle of the fast rotor. After 13 cycles of the fast rotor, fotor III would have had 8 cycles and the setting of rotors III and IV would have been the same as at the beginning. The setting of rotor III at the beginning of each cycle of rotor IV was known because each notch on rotor IV was active only once.

CSCAS-76C (8 October 47)

Higure 2

Satting
1111222231333444455556616777788889999 Rotor IV 25703.580368136914692479257025803581368

ROSXMCEEXICGNRNINXSLEXSENPDHERXAPTMXOQPH OHOCSLRTRCZKRJPTJTKCQLNBPPGJPZKCYOJOCJS

G NXREHAXMCHEEIDLIOXILFXIXREXENGXIEEXUEE ZGPFRXRFJANAXZEKY(L)BGLDIXKXJNKEKPHJEDFC

PDSEDXCAESXTTTXLLEEEIFSSENTXMENEVRXAERX

OOADXGHSECAXXIDILXCDINOXIAIHAENEXEGAXSXH ZGEVLOXVZLPQFMAZBJLNPATKNWAGJDNGBXDYRLZ

NNIUFOIXTRNBDAOOITOXNARFODEAPNEXOXTRTRO SOIQDTURVTKOBHXKTAGAUXZIRCNMEBZZEZSOYRE

困 XDCOUNAXIXEENLNOHNCGNXUCXDTOTRXRPNTOIEU \#FZDBBNCVUKKJUUKYRLXTYOUJSXUTODNHGJPSWJ

LAXERIGXASAXCXLXNEOOXCTTKAXXSXAMXAOLUOPS

K UTXGDXRXICCIAAFXXMMCIHUXGAPTMLAIRYETNOE JXWYV.PKYUBHAPBRAYNNUAEIXJMA HRZTPGNTSDGC

JTOTEXEOPSTOSPRIDNIMOAEREAURRIGNNTXEIXRX YJXWTFYSJSEDSIIGXGNSGNORAGITINLIIDUNFFM

IHDHSHFRRXIUIOXVOAOAMLXEATTIOGEDVYCXNBTO FHCWSGHCPRHXIXWMOMWQTCKDEPDXYBTZULCIVOL

H OAEXAELOTOPOSEELTXXMXNXRNHMPHLAIXOCEAXF URLXEZDTKNNRTXVKEEEOMLHSVZPLNESFDAKZIFG

G RYXDVEDSHNENTEXLITAAWACKXOEHTETTTAOXSCX WBQFOCNINPGPISDMQSTEFTOFNSYSBNCTOEHPACQ

Piqure 2 - Continued

Sotting Botor IV

11212223333444455556661677778888999 $\begin{array}{llllllllllllllllllllllllllllllll}14 & 4 & 9 & 1 & 4 & 7 & 9 & 4 & 7 & 0 & 2 & 5 & 0 & 3 & 5 & 3 & 0 & 3 & 6 & 8 & 1 & 3 & 6 & 9 & 1 & 4 & 6 & 9 & 2 & 4 & 7 & 2 \\ 4 & 7 \\ 4 & 6 & 2 & 8 & 4 & 0 & 6 & 2 & 4 & 0 & 6 & 2 & 8 & 4 & 0 & 6 & 2 & 8 & 4 & 0 & 6 & 2 & 8 & 4 & 0 & 6 & 2 & 8 & 4 & 0 & 6 & 2\end{array} 84406$

 Cy

csans-76c (8 october 47)

PLugbaamd

In each of the 10 boxes any one of the 13 outputs may be plugged to any of the 13 inputs in that box.

The matohed phain and ciphor at ach setting of rotor IV was examasa at an interval of 23 for hite. ren such hita pere found.

Hit	Lositions	Setting of Botor IV
$x_{p}=I_{c}$	443-781	-3
$A_{P}=G_{C}$	$31-797$	0
$\mathrm{x}_{\mathrm{p}}=I_{C}$	$34-372$	L
$x_{P}=3_{C}$	264-502	L
$\mathrm{E}_{\mathrm{p}}=\mathrm{v}_{C}$	320-658	L
$M_{P}=I_{0}$	348-656	J
$\mathrm{P}_{\mathrm{P}}=\mathrm{L}_{0}$	566-904	2
$\mathrm{X}_{\mathrm{p}}=d_{C}$	73-749	X
Tp $=\mathrm{H}_{\mathrm{C}}$	$99-473$	Y
$x_{p}=E_{C}$	281-957	\mathbf{Y}

These hits were assumed to have been caused by enoifherment through rotors III and IV once each. Ithe hits $\mathrm{K}_{\mathrm{p}}=\bar{I}_{\mathrm{C}}$ which apperered at eattings 0 and L were excmined firmi.' It was assumed that these must be caused by parallal wires in rotor IV ank rotor III baing at the sase satting, or different outputs iron fotor. IV and cisferent settinge of rotor III. fixamaition of poesible
 poasible outguts irom rotor IV which could be plugged direotiy to an entrance point of rotor III mas mede.

Pogsible ilugerngs of

Output of Rotor IV
Settink L
Setting S
 rotor IV, the output Isom rotor iv is at B, and at getting S, the output is at 2. The underlined lattser are outputs from rotor $X V$ witich can be plugede directly to inputs of rotor III. No possiblo ingut of X to rotor IV iras outputa from rotor IT at both actuings, hand S, which can be directly pluged to rotor III so ths first asmumption was incorrect.

Another hit, $P_{P}=K_{C}$ at atting Z of rocor IV, was chosen for exanamation as a singlo $\mathrm{Z}_{\mathrm{P}}=\mathrm{K}_{\mathrm{O}}$ occured at position 805 setting 0 of notor IV.

cscas-760 (8 October 47)

$$
\begin{aligned}
& \text { Possible Pluggings of } \\
& \text { Pon L.F.S. to Rotor IV } \\
& \text { Output of fotor IV } \\
& \text { Satting U } \\
& \text { Setting Z. }
\end{aligned}
$$

If I^{\prime} on the L.E.S. wes plugeed to input F on rotor IV, the output from rotor IV at settings U and Z could both be pluged directly to an entranco point of rotor III.

Another liit, $A_{p}={ }^{G} C$ at setting 0 of rotor $I V$, was examined together with othar $A_{p}=G_{C}$ at positions 160 and 914 with setting P of rotor IV, at position 530 with setiting J of rotor IV, at position 589 with setting C of rotor IV, and at position 546 with setting T of rotor IV.

Fosgible Pluggings of							
A on L.F.es. to Rotor IV	3	C					1
Output of lotor IV							
3etting 0	P	Y	I				I
Setting P	\bar{X}	2					d
Setting J	$\underline{1}$	V	I				I
Setting G	$\overline{\mathrm{c}}$	X					a
Setting T	$\overline{\mathrm{K}}$	5	Q				

There were 3 possible pluggings of A on the L.F.S, to rotor IV (B, K, and s) which would give outputs at 3 of the 5 settings which could be directiy plugged to an ontrance point on rotor III.

First, A on the L.F.S. was assumed plugged to input K on rotor IV, so that the output from rotor IV at both settings 0 and P would be U. Table I was made to show the seting of rotor III at positions 31, 160, 914 and 589, assuraing all peabible settings of the notch ring on rotor IV. Figure 3 shows the possible inputs to rotor III from output U on rotor IV and the exit points from rotor III wisich can be plugged directly to G on the R.E.S. at aach of the possible settings of rotor III. Since, from Table I, position 31 and 160 could not have the same settiggs of rotor III, there was no possible plugeing of output U on rotor. IV to an input of rotor III which could make $A_{P}=C_{C}$ at positions 31 and 160 or 914 two rotor encipherments.
'CSGAS-76C (8 October 47)
Figure 3.

Possible Settings of Rotor III at Position

Possible Pluggings of Output U on Rotor IV to an Input on Potor III

$$
\begin{aligned}
& -\bar{X}-L-\overline{-} \\
& -\bar{X}- \\
& -=-\quad
\end{aligned}
$$

31 \& 707

914

$$
\begin{aligned}
& 0 \\
& \mathrm{P}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{Q} \\
& \mathrm{R}
\end{aligned}
$$

PABLE I

Possible Notch Iing Settings on Rotor IV at Beginning of Message
1
2
3
4
5
6
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Settings of Botor III at Positions 31160914530589805904

Next, A on the L.F.S. was assumed plugged to input B on rotior IV so that at setting 0 the output from rotor IV was at P. This was the same output as when P on the L.F.S. was plugged to F on rotor IV at setting U. Table I was extended to show the settings of rotor III at positions 530, 589, 805, and 904, assuming all possible settings of the notch ring on rotor IV. Figure 4 shows the possible inputs to rotor III from rotor IV and the exit points from rotor III which can be plugged directly to G or K on the R.F.S. at each of the possible settings of rotor III. The $A_{P}=G_{C}$ at position 589 was not consistent with $A_{P}=G_{C}$ at positions 31 and 530 and $P_{P}=K_{C}$ at positions 805 and 904. Therefore, it was assumed that $A_{p}=G_{C}$ at positions 589 was not a two rotor enciphernent. From Figure 4, the output \mathcal{F} on rotor IV was assumed plugged to input X on rotor III and output A on rotor IV plugged to input R on rotor III. G on the R.F.S. would be plugged to output H on rotor III and K on the R.F.S. would be plugged to output I of rotor III.

Figure 4 .

Possible Settings of Rotor III at Position
$\begin{array}{ll}31 \& 707 & L \\ A_{P}=a_{C} & \begin{array}{l}\text { N } \\ 0\end{array}\end{array}$ $\begin{array}{ll}805 & D \\ P_{P}=K_{C} & E \\ F\end{array}$

589
$A_{P}=G_{C}$

904
$P_{P}=K_{C}$

Possible Pluggings of Output P on Rotor IV to an Input on Rotor III

- - - -

$\bar{p}-\mathrm{L}-$
$\mathrm{P}-\mathrm{X}-\mathrm{D}$
Possible Pluggings of Output N on Rotor IV to an Input on Rotor III

E	K	Q	U	W	Y
-	-	-	-	-	
				-	P

Possible Pluggings of Output C on Rotor IV to an Input on Rotor III

- D - - -
$-1-2-$

Possible Pluggings of Output A on Rotor IV to an Input on Rotor III

F	L	R	V	X	2
-	-	-	-	-	-
T		L	-	X	-
T	H	-	-	P	-

Also from Figure 4, the setting of rotor III at position 31 mast be N, at position 805 E or D , at position 530 S or T , and at position 904 V . All settings of the notch ring on rotor IV were eliminated which produced other settings of rotor III at those positions. The notch ring on rotor IV could be sot at position 12 or 19 at the beginning of the message. Also at position 805 the setting of rotor III would be at E and at position 530 the setting of rotor III would be at I which would cause the output of \mathbb{N} on rotor IV to be plugged to input W on rotor III. These assumptions were tested on position 328, setting D of rotor $I V$; where $P_{P}={ }^{G}$. At this setting if P of the L.F.S. was plugged to input F of rotor IV, the output was P of rotor IV which was assumed plugged to input X on rotor III. If the notch ring on rotor If was set
at posituion 12 at the baginning of the magagen rotor III would bo at setting
 2t 0 ．If the notoh xine on rotor IV wes set at yosition 19 at the begianiag of
 rotor，III an suput at x gave an output at H．It had been assumod that G on the R．F．iS．was plugged to output H on rotor $I I$ so tiat assumption was confixmed and the setting of the notoh rinit on rotor IV waz 19 at the beginning of tho message．losition 982，$A_{j}={ }^{H}$ ge at setting 2 on rotor iv gave an output at V
 that the notoh ring on rotor If was at 19 at the boednning of the measage，rotor III would be at setting 2 at position 982 ．If the output of rotor IV at U was plugged to inpate E on rotor ISI，the output of III at getting 2 would be irom the plugbeard it wan poasible For outpot if on rotor IV to bo plugece to ingut is on rotor Ili．thue it was assumad that the reasoning thos far was correot aid the actinic of rotor IRI for each position was written out．

Hits of $X_{j}=x_{\text {a }}$ appeared at positions 445 and 575，aetting 9 of sotor I7s at poaitions $22 \overline{2}$ ant 342 ，setting i；at positions 508 and 742 ，cotting F；
 cheae ware amamad possible 2 rotor cncipherments through rotors 11 and IV． s single $X_{y}=L_{C}$ appeared at setting 0, yosition 967 anj also at setting A_{g} position 337.

Betting
4
\vdots
6
I
\vdots
0
A

J	\％	n	？	2
T	2	，	P	＋
T	茄	F	4	0
D	8	昜	7	1
X	B	Lit	\％	\underline{E}
\square	3		5	U
2	2	T	F	T
I	$\underline{1}$	晰	4	J

Lt wes arsumed the $t X$ on the 2.3 .3 ．was pluged to input is of rotor IV since foar of the seven settings at which $X_{p}=L_{C}$ cave outpat at 8 of rotor iV which could be fluge ed direotly to an ingat of rotor II．The satting of rotor II at tiese positions wi：assumed to be the mame or to have parailel wires efsctivo．

It was noted that $X_{p} \equiv I_{C}$ which occurred at positions 338 and 342； setthing T and P respectively，could have the same setting of rotori II if F on rotor III had no effectite notch ．This wes assumed to be true－gnd so limited the possible settings，of the notoh ring on rotor．II to 10 Namely ．Fet at $3,4,6,7,8,13,20,22$ ，or 26 ．Dable II showed that there were 7 to 12 possible changes of setting of rotor II between positions 342 and 357，depending upon the setting of the notch pattern on rotor III：

4fure 5 showe that them were no setcinge or rotor 11 at an interval

CSchs-76C (8 October 47)

of 7, 8 , or 11 which would allow $X_{P}=L_{C}$ at positions 342 and 357 to be 2 rotor encipherments. At an interval of 9 there were 7 poesible settings of rotor II. which would allow $X_{P}=L_{C}$ at positions 342 and 357 to be 2 rotor encipherments. At an interval of 10 there were 2 possible settings of rotor II and also 2 at an interval of 12 ; These were as follows:

TABLE II

Figure 5.

Setting of Rotor II	Input to Rotor II Which Cen Be Plugeed to Outputo B or Rotor IV	Oatput From Rotor II Thich Can Be Plugged to L on the R.Fi.S.
A	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~S} \end{aligned}$	$\frac{\mathbf{M}}{\mathbf{X}}$
B	0	0
c	$\underset{Y}{M}$	$\begin{aligned} & \Psi \\ & U \end{aligned}$
D	$\begin{aligned} & S \\ & Y \end{aligned}$	$\begin{aligned} & \mathbf{U} \\ & \mathbf{E} \end{aligned}$

REF, ID: A4146724

CSCAS-76C (8 October 47)
Figure 5 (Contimied)
Setting of Input to Rotor II Output From Rotor II Which Can B_{e} Rotor II Which Plugged to Output Can Be Plugged B of Fotor IV to L on the R.F.S. E

G	\ddots	I
G		Q
S		M

F	E	A
	s	\dot{Q}
	X	M

G

H
C
$\underset{\text { E }}{\mathbf{Y}}$
I
$\stackrel{C}{4}$
M
\pm
E

J
S
I
K
E
Q
L
A
A
G
E

M
${ }_{i}^{G}$
M

N
Y
Y
0

Δ	M
a	\mathbf{M}
\mathbf{M}	\mathbf{I}
\mathbf{S}	

P
${ }^{c}$
Δ
A
I
Q
${ }^{\text {c }}$
I

R

A
G

E
A

S
c
M

At an Interval of 9

Setting of Rotor II	Setting of Rotor II	Ingut to Rotor II To Phich Output B	Output of Rotor II To Which L on
Position 342	Position 357	On Rotor IV is Plugged	RoF.S. is Plugged
D	[Y	E
F	7	E	A
H	Y	C	$\underline{1}$
J	A	S	Y
L	C	Y	U
\checkmark	in	G	H
2	Q	C	I

At an Interval of 10
$\begin{array}{ll}\mathrm{E} \\ \mathrm{W} & 0 \\ \mathrm{H}\end{array}$
9
\mathbf{y}
8
I

At an Interval of 12
A
0
S
I
0 I
$\dot{\mathbf{I}}$
E

CSCAS-76C (8 October 47)

The six possible settings of the notch ring on rotor IV which would allow 9, 10, or 12 changes of setting on rotor II between positions 342 and 357 were tested on positions 130 and 147. Table III showed that the number of changes of setting between positions 130 and 147 could be $9,21,12,13$, or 14. Using Figure 5 it was found that there were no settinge of rotor II at an interval of 11 or 13 which would allow $X_{P}=L_{C}$ at positions 130 and 147 to be 2 rotor encipherments. At an interval of 9 and 12 the same settings and pluggings were possible as were possible

TABLE III

possibte between positions 342 and 357. At an interval of 14 the following settings and pluggings were possible.

Setting of Rotor II	Sotting of Rotor II	Input to Rotor II to Which Output B	Ontput of Rotor II To Which L on
Position 130	Position 147	On Hotor IV is Piugged	R. FiS. is Plugged
A	通	G	M
E	Q	c	I
1	0	Y	E
A	0	S	Y

If the notch ring of rotor III was get so that 3 was on F, there ware 10 changes of setting of rotor II between positions 338 and 357 and 12 changes of setting of rotor II between positions 130 and 147 . The intervals of 10 and 22 had no settings which mould allow the same plugging of output B on rotor IV to an input of rotor II and L on the R.F.S. plugged to the same output of

CSGAS-76C (8 October 47):
rotor II. The same was true for position 26 on the notch ring. Position 6 of the notch ring was possible because the number of changes of setting between positions 338 and 357 and positions 130 and 147 were both 9 and the settinge could be identical for each pair. Position 18 was also possible because there were 12 changes of setting between positions 338 and 357 and 14 changes of setting between positions 130 and 147 and the intervals 12 and 14 had one setting and plugging in common. Namely, rotor II would have to be at setting A for positions 338 and 130 and at setting 0 for positions 357 and 147. However, this was impossible. When the setting of the notch ring on rotor III was assumed as position 18 at F and the motion was followed through from the beginning of the message, position 130 was at setting F.

When the setting of the notch ring on rotor III was assumed as position 6 at F, the setting of rotor II at position 130 was L. This-setting was possible and so was assumed correct. Therefore, output B on rotor IV was plugged to input Y on rotor II and output U on rotor II was plugged to L on the R.F.S. At positions 212, 338, and 342, rotor II was at position L and at positions 147 , 357, and 615, rotor II was at position C. In all six positions X_{P} was enciphered through the same path of rotors II and IV.

Other pluggings were placed by assuming the following plain to be two or three rotor encipherments.

Plain	Cipher	Position	Settings			Plugging Output	Assumed Input
X	L	445	D	T	Q	O-IV	S-II
		575	D	R	Q		S-II
X	E	783	H	I	0	D - II	E-R.F.S.
		913	H	R	Q		
X	R	159	T	N	Q	S-II	R-R.F.S.
x	I	601	4	B	Q	R-II	I-R.F.S.
z	R	706	1	0	P	S - II	$\mathrm{R}-\mathrm{RoF}$ S.S.
X	N	108	2	s	p.	W - II	N - R.FoS.
		238	2	0	P		
X	N	888	T	${ }_{6}$	P	W-II	$\mathrm{N}-\mathrm{R} . \mathrm{F} . S$.
\pm	N	407	2	Q	c	- - II	$\mathrm{N}-\mathrm{R} \cdot \mathrm{P} . \mathrm{S}_{\text {S }}$
区	W	992	J	U	P	$\mathrm{F}-\mathrm{II}$	W-R.F.S.
z	0	303	H	c	c	$\mathrm{B}=\mathrm{II}$	$0-\mathrm{R} \cdot \mathrm{F} . S$.
x	0	910	日	R	T	B-II	$0-\mathrm{R}$ F.S.
X	X	901	N	1	c	Y-II	X - R.F.S.
X	S	617	B	Q	A	J - II	S-R.P.S.
X	P	97	F	7	A	M - II	P - R.F.S.
		955	F	0	A		
I	T	409	8	0	A	A - II	T-RoF.S.
\pm	E	95	a	A	c	$\mathrm{X}-\mathrm{II}$	$\mathrm{L}-\mathrm{II}$
X	E	719	0	G	c.	2-II	$\mathrm{P}-\mathrm{II}$
X	H	988	J	∇	T	F - II	H-R.F.S.
${ }^{\text {R }}$	T	926	\pm	J	D	$\mathrm{R}-\mathrm{L}$ F S S.	A - IV
R	0	122	0	J	B	M - IV	D - II
		512	0	D	B		

cscasm 76C (8 Octobar 47)

ar in rozar o

Plain	Ciphor	Poaition	Settings			Plugeing output	Agsumed Input
					IV	$\mathrm{F}=\mathrm{III}$	
R	I	$\begin{aligned} & 348 \\ & 688 \end{aligned}$	$\begin{aligned} & x \\ & y \end{aligned}$	$\hat{A}_{\mathrm{A}} .$	$\stackrel{J}{J}$	$F=I I I$	I-H.F.S.
x	I	$\begin{aligned} & 443 \\ & 781 \end{aligned}$	\bar{B}	2	3 3	O-III	H-III
H	3	42	9	i	0	$\mathrm{X}-\mathrm{II}$	L-II
1	\underline{F}	972	12	0	J	E-III	F-h.F.S.
n	a	84	\%	J.	5	O-II	C-III
A	3	45	F	D	2	A - III	B-R.P.S.
A	a	483	E	1	2	A-III	B-1. P.S.
A	11	956	E	P	2	W-III	$\mathrm{H}-\mathrm{ToHoS}$.
A	n	254	N	F	2	V-III	1) - III
A	*	410	E	N	2	J-III	R-1I
x	a	70	0	p	B	\%-1II	$\mathrm{H}-\mathrm{Fi} . \mathrm{F}_{6} \mathrm{~S}$.
x	i	486	F	T	8	\%-115	Q-II
X	A	590	A	H	B	J-IIY	$\mathrm{r}=\mathrm{II}$
x	D	564	1	\%	3	3-1II	D-R.F.S.
X	\underline{F}	391	H	2	8	D- III	V-II
8	Y	937	5	B	s	$\mathrm{H}=\mathrm{III}$	4-II

Thare was one inconsistency in the preceding assumptions. $X_{p}=W_{C}$ at
 $X_{F}=H_{C}$ at position 988 gave the output y on rotor II es plugged to H on the R.F.S. Since this was impossible, these positions were not two rotor encipherm ments and outgut F could not be plugged to any letter on the R.si.S.

In the matched plain and cipher there were four inotances where two consecutive plain letters were identical and the cipher letters were identical. These were $L_{p}=\mathrm{H}_{\mathrm{C}}$ at positions 402 and $403, \mathrm{M}_{\mathrm{p}}=\mathrm{MC}_{\mathrm{C}}$ at positions 477 and 478 , $E_{p}=J_{C}$ at positions 704 and 705 s and $M_{2}=X_{C}$ at positions 977 and 978. These were assumed to be 2 rotor encipherments through rotors I and II snd thet the rotors had not moved betmeen the lst and 2nd encipherment of esch hit. Then the settinge of rotor II were inspected to see if rotor II had remained atationary at these consecutive positions, it was found that it hed remaineed stationary at 8 for positions 402 and 403 and stationesy at for positions 477 and 478 , but had moved betreen positions 704 and 705 and yositions 977 and 978 . It was thon essumed that the notch ring on rotor II was set 80 that $\$$ and had no effective notoh so that rotor I would remaja stationary between positions 402 and 403 and positions 477 and 478. When the notch pattern was examined to see if the notoh ring could be set so tolat both d and could have no offective notch, it was found that there were three posaible settings of the notch ring. 13 could be at settine 2,19 , or 26 of the notch ring.

The matched plain and cipher was rewritten 80 thet the positions onciphered at ench authin of rotor II were written together. Miure 6 ghowe the positions enciphered at setting M and I of rotor II.

Cscas-76C (8 October 47)
Figure 6.
Setting M
Position
Plain
Cipher

Setting I
Position
Plain

Cipher

At setting M positions 820 and 859 were both $E_{P}=W_{C}$ and at setting I positions 221 and 263 were both $\mathrm{H}_{\mathrm{P}}=\mathrm{N}_{\mathrm{C}}$. It was assumed that these were two rotor encipherments between rotors I and II and that rotor I was at the same setting at positions 820 and 859 and at positions 221 and 263. The 3 possible notch ring settings on rotor 11 were tested between these positions to see if they would allow just 26 changes of setting of rotor I between these positions. From Table IV it was noted that when position 2 of the notch ring was set at B of rotor II, there were 26 changes of setting of rotor I between positions 820 and 859 and positions 221 and 263. Therefore, it was assumed that the notch ring on rotor II was set at 2 on B and the settings of rotor I were written for each position of text.

The hit $\mathrm{B}_{\mathrm{P}}=W_{C}$ at positions 820 and 859 , setting \mathbb{K} of rotor II and I of rotor I was assumed to be a two rotor encipherment. If on the R.F.S. could be piugged to output F, N, or V of rotor II, but at setting 4 of rotor II, output N was the only one which would allow the input to be plugged directly to an output of rotor I. At setting I of rotor I, E on the L.F.S. could be plugged to input B of rotor I which would cause output N of rotor I to be plugged to input $t /$ of rotor II or E could be plugged to input R of rotor I which would cause output H of rotor I to be plugged to input 4 of rotor II. These possible pluggings of E were tested on $E_{P}=W_{C}$ at positions.

$\underset{\text { in }}{\substack{\text { Position }}}$	$\begin{aligned} & \text { setting } \\ & \text { oif } \end{aligned}$	$\begin{aligned} & \text { Sotting } \\ & \text { on } B \end{aligned}$		toh Ring or II	$\begin{aligned} & \text { Position } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { Setting } \\ & \text { of } \end{aligned}$	$\begin{gathered} \text { Settsing } \\ \text { on B } \end{gathered}$	$\text { of } \mathrm{N}$ $\text { of } 1 \mathrm{O}$	tch Fing Or 11
Message	Hotor II	2	19	26	Measage	hotor II	-2	19	26
820	4	-	.	.	221	1	z	,	
821	I	-	\pm	X	222	H	x	x	X
822	8	-	\checkmark	x	223	0	.	x	x
823	K	-	-	X	224	F	x	X	.
824	J	x	X	\%	225	F	X	x	-
825	J	8	x	\mathbf{x}	226	E	x	x	x
826	I	X	-	-	227	D	-	'.	.
827	I	x	-	-	228	c	x	X	\pm
828	I	8	-	-	229	c	K	x	x
829	H	X	X	x	230	C	$\underline{8}$	8	x
930	0	*	$\underline{ }$	X	231	B	-	.	.
831	F	x	$\underline{8}$	-	232	A	\%	X	X
832	E	x	X	X	233	A	x	X	X
833	D	.	.	.	234	2	.	X	X
834	c	,	I	x	235	2	-	\pm	x
835	${ }^{1}$.		236	2	-	8	X
836	A	x	X	\pm	237	2	-	X	I
837	A	x	8.	x	238	2	.	χ	X
838	2	*	7	\%	239	Y	x	.	x
839	Y	\%	.	X	240	x	X	\pm	x
840	X	\%	x	\mathbf{x}	241	\#	X	X	
84	*	X	I		242	V	x	-	$\dot{\text { x }}$
842	v	x	.	\pm	243	U	.	.	.
843	0	-	-	.	244	T	8	\bullet	X
844	T	8	-	X	245	T	X	.	X
845	T	x	-	X	246	T	8	\cdot	X
846	T	4	-	X	247	5.	.	x	X
847	T	x	-	X	248	$\mathrm{r}^{\text {: }}$	X	x	.
848	T	X	-	X	249	0	X	X	X
849	T	x	-	\pm	250	P	.	.	\pm
850	s	.	\pm	X	251	0	x	\dot{x}	A
851	s	-	x	8	252	N	x	X	!
852	3		\pm	X	253	\%	8	X	
753	R	X	X	.	254	N	x	x	-
854	8	\pm	x	X	255	N	X	\underline{X}	-
855	P	.	-	x	256	\cdots	χ	I	.
856	0	8	X	-	257	M	-		
857	0	8	8	.	258	${ }^{\text {I }}$	-	x	\pm
858	N	$\frac{x}{20}$	$\frac{X}{2 I}$		259	1	-	$\underline{\chi}$	X
		$\frac{26}{26}$	21	$\overline{26}$	260	I		x	I
					261	K	\cdot	-	x
					262	J	$\frac{x}{26}$	$\frac{X}{30}$	$\frac{8}{27}$

CSGAS-76C. (8 October 47)
806 and 884, setting U of rotor I and I of rotor II. If E on the L.F.S. was plugged to input B of rotor I, the output f of rotor I could be plugged to input A of rotor II. If E was plugged to input K of rotor I output U of rotor I could not be plugged to input A of rotor II. Therefore itwas assumed that \mathbb{E} on the L.F.S. was plugged to input B on rotor I, output N of rotor I was plugged to input M of rotor II and output H of rotor I was plugged to input A of rotor II. This plugging was veriffed by $E_{P}=T_{C}$ at position 330 , setting 1 of rotor I and getting R of rotor II.

Thirty-nine of the 130 pluggings had been recovered. The rest of the pluggings were recovered by taking several matched plain and cipher pairs for a particular plain letter and tracing through paths which would give consistent pluggings.

Plain	Cipher	Position	Settings				Plugging Output	Assumed Input
			1	I.I	IIII	IV		
c	0	768	P	P	0	F	C - L.F.S.	K - I
C	S	106	K	2	T	R	V - I	G - II
C	0	26	I	U	P	T	$0-1$	S-IV
C	B	144	S	8	W	F	H-I	V - III
C	C	236	S	Z	\ldots	R	$P-I I I$	C = R.F.S.

The complete recovered plugging is given in Figure 7.
Conclusions: It is not known whether this solution would have been possible if the rotor order and initial settings of the rotors had not been known. A study will be made to see if they gould have been recovered.

The number of trials which would have to be made to set the notch rings could be greatly increased by making the notch rings removable so that any notch ring could be used on any rotor.

Rotor IV used in this study had four wires which were parallel and this was very helpful in that it gave many repeats caused by the same path. Rotor wirings should be limited to pairs of parallel wires.

PHHLIS RETCALP
Cryptographic Plan Subsection

Figure 7
plugboard rearanged to shom pluggings

1				3		4		5	6	7		8		9		10	
\underline{I}	II	1	II	I	II	I	II	I II	1 II	I	II	1	II	I	II	I	II
A	B	B	V	C	K	D	D	A H	B Q	D	E	C	V	B	0	A	T
LES	4	L.FS	1	FLS	1	LFS	1	12	13	2	RFS	2	2	2	RIFS	2	RFS
F	0	E	B	G	1	H	X	U 2	$\square G$	H	A	G	5	F	V	E	1
LFS	4	LFS	1	LFS	4	LFS	1	1. 3	12	2	EFS	2	3	2	3	2	2
I	C	J	D	K	0	L	v	W 2	X	L	J	K	0	J	5	1	U
LFS	4	LFS	4	LFS	1	LIFS	4	12	13	2	3	2	3	2	BFS	2	2
M	E	N	T	0	Y	P	F	Y T	2 E	P	T	0	C	N	W	M	P
LPS	1	IFS	4	LF3	1	LIRS	4	12	12	2	3	2	3	2	Rfs	2	FFS
Q	0	$\underline{1}$	A	5	c	T	P	A \quad R	B. I	T	H	S	R	R	I	Q	0
LFS	1	LFS	4	LES	1	LPS	1	43	42	2	RFS	2	RFS	2	PFS	2	2
U	0	V	P	W	W	X	N	C F	D C	X	\boldsymbol{L}	\%	N	. 7	8	U	L
Lif	4	IFS	4	LIFS	1	LFS	4	43	42	2	2	2	RES	2	3	2	RFS
\mathbf{Y}	A	2	H'	H	E	G	2	P F	E K	B	P	A	B	2	P	7	X
LFS	1	LPS	4	4	4	4	1	42	43	3	3	3	RFS	2	2	2	RFS
C	Q	D	F	E	M	F	2	G 1	H A	F	I	E	F	D	V	C	0
1	1	1	1	1	4	1	4	13	12	3	HES	3	RFS	3	2	3	3
I	W	J	J	K	5	\underline{L}	1	M. V	N :	J	R	I	I	H	0	0	A
1	4	1	1	2	1	1	1	13	12	3	2	3	3	3	RFS	3	3
0	S	P	R	Q	G	R	R.	S N	T $\quad 1$	N	0	3i	Q	L	K	K	2
1	4	1	. 4	1	2	1	4	12	13	3	PFSS	3	2	3	RFS	3	RFS
I	M	J	R.	[15	U	L	J	M D	N	$1 /$	X	Q	K	P	C	0	碰
4	1	4	1	4	4	4	4	42	43	3	2	3	2	3	PFS	3	3
T	K	S	1	F	Q	Q	H	P X	0 S	V	D	U	J	T	H	5	D
4	4	4	4	4	4	4	1	43	42	3	3	3	ATPS.	3	3.	3	FFS
2	1	Y	N	X	I	W	T	V B	U. E.	2	Q	Y	∇	X	j	W	H
4	1	4	1	4	4	4	1	42	43	3	RFS	3	RFS	3	2	3	RRS

This arrangement of the plugboard has been written so that each output is opposite the input to which it is plugged. A on the LFS is plugged to the input at B of rotor $I V, F$ on the LFS is, plugged to the input at 0 of rotor $I V$, and etc.

The following-described embodiment of SUPERFLEX is felt to have the advantages of (1) mixed-level atator wiring, (2) smellness and compactness, and (3) ease of changing daily key. It employs a rotor basket of special design, using only 4 rotors (26 -point rotors will be assumed, but other size rotors would not seriously alter the design). The rotor basket has two endplates and three separators, (see Fig. 1) with 26 soring contacts built into each of the 8 faces (designated a through h) which contact a rotor surface. The spring contacts are connected, accorging to a wiring plan like that of Fig. 2, to the bank of spring contacts on a "reflexing plugboard". (Fig. 5 is a diagramatic representation of the face of the phugboard, and shows connections between plugboard pins and points on the contact faces of the rotor basket.) Thes "plugboard" (see Fig. 3) has 260 spring contacts, arranged in a rectangle 13×20, and is fitted with a hinged panel into which 10 "slides" can be placed. (A similar "plugboard" containing such opring contacts is in use on the SIGJIP.). Each slide consists of bakelite or other suitable insulator on which appear two rows of 13 points arranged to contact 26 of the spring contacts on the plugboard these points are connected by printed circuits on the face (or both faces) of the slide, to form actually 13 circuits (See Fig. 4). By inserting a set of ten slides, selected from a stock of some 50, according to'a daily key list, a complete change of atator wiring will in effect be obtained. With only 4 rotors to be assembled from perhaps 5 or 10 kept on hend, the daily mechine setup is kept relativoly simple for a device of its security.

The motaon control scheme need not be especially complicated, since the same considerations apply as have been discussed in the original paper, and in the various comments attached thereto. Also, it might be felt adequate to have movable aiphebet rings, and dispense with movable notch rings, using clear indicators, if traffic is kept low enough to prevent too great depths.

It will be noticed from Fig. 2 that the contacts of the soparators are wired to different stators, and in such a way that a plain letter impulse must-pass through at least one rotor to effect encipherment.
J.R. CHILES

November 1946

Fig.l. Rotor Basket CKOSS-SECTION-TOF VIEW

Rotor Basket Housing CROSS-SECTION-TOPVIEW ssfinfet

FIG. 2. PLAN OF ROTOR BASKET
Showing Connections to Points on Reflexing Plugboard

Contact Faces: . LFS a b c a e f g. h RFS to
Plugboard Positions: \qquad

A	1	1	1	1	1	1	1	1	1	6
B	2	2	2	2	2	2	2	2	2	7
C	3	3	3	3	3	3	3	3	3	8
D	4	4	4	4	4	4	4	4	4	9
E	5	5	5	5	5	5	5	5	5	\emptyset
F	1	6	6	6	6	6	6	6	6	6
G	2	7	7	7	7	7	7	7	7	7
H	3	8	8	8	8	8	8	8	8	8
I	4	9	9	9	9	9	9	9	9	9
J	5	\emptyset								
K	1	1	1	1	2	1	1	1	1	6
I	2	2	2	2	3	2	2	2	2	7
M	3	3	3	3	4	3	3	3	3	8
W	4	4	4	4	5	4	4	4	4	9
O	5	5	5	5	6	5	5	5	5	\emptyset
P	1	6	6	6	7	6	6	7	6	6
Q	2	7	7	7	8	7	7	8	7	7
R	3	8	8	8	9	8	8	9	8	8
S	4	9	9	9	\emptyset	9	9	\emptyset	9	9
T	5	\emptyset	\emptyset	4	6	5	\emptyset	\emptyset	\emptyset	\emptyset
U	1	1	6	1	7	1	6	1	6	6
U	2	2	7	2	8	2	7	2	7	7
W	3	3	8	3	9	3	8	3	8	8
\mathbf{X}	4	4	9	4	\emptyset	4	9	4	9	9
\mathbf{Y}	5	5	\emptyset	5	\emptyset	5	\emptyset	5	\emptyset	\emptyset
Z	1	\emptyset	9	1	6	2	7	3	8	6

(The inverse of this chart is given in Fig. 5).
LFS = Left Fixed Sequence

Fig.3. Reflexing Plug Board
face View

FIG. 5. REHLEXING PLUGBOARD, Showing Actual Connections to Positions in Fotor Basket (According to Wiring Plan of Fig. 2)

T0:	CrC Projeota Section
FROM:	MR. SNYDER
GUBTECT:	Guggested Cipher llachine, guparams

1. Gryptologic Principles.

a. The cipher machine dosign submitted herewith empodies what is coneldered to be one of the most general applications of the principle of reflexing. It resulte in effecting a change in the number and order of rotoss, with each letter enciphered. Thag, using 5 conventional Hebern-type rotors, and with certain restrietions aesoribed below, a lettor is eneiphered in offect by pasaage through any number of rotors prom two to 78, with an average path of about 5 , and in practically any order.
2. Oryptography.
a. The machine consigts of pive conventional lebern-type notched rotors (numbered 1 to 5, Fig. 1), and six stators, (numbered A to F, Fig. 1). One stater 1 s on each end of the assembly, and between succeselfe pairs of rotors, The stators are each equipped with 26 input contact points and 26 output contact points, each point connected by wire to a piugboard outiet. The outlets are arranged in 26 sets of 12 points, (6 input and 6 output) corresponding to the 26 positions of the rotor-stator assembly, so that each get can be readily plugged
up, 6 inputs to 6 outputs.
b. Letter is enciphered by dopressing a ley, say $\%$, which sends an impule through the correaponging input point of separator (atator) A, through the plugboara to output of stator 0 to enter rotor 3 (See Fig. 2). At the partioular setting shown in the exemple, rotor 3 is at a setting auch that the "cin impulse onters that rotor at G; following the wire through the rotor reveals that the 1 mpulse leaves rotor 3 to contact a point on the stator which takes it to rotor 2, which it enters at L. Again the impulse is taken through the rotor to leave at a point on stator 0 which is wired to onter rotor 5. Entering rotor 5 at , the impuise leaves at a point which is plugged to go to rotor 5 at 0 , and then through "right Ifxed sequencen to typebar F. (Digit 6 is used to represent R.F.S., in the plugeing diagrams.)
c. To insure passage of current through a minimun of two rotors, stator A (which is in contact mith piein letters on the input side) shoula be wired, on its output side, to only 3 os the 5 rotors; none of these three must be alloved to go straight out to eipher. The result of applying these inmitations if ahown by Fig. 3, whioh lists all the poselble stator wirings, and the conditions set up to control plugging possibilitien.

SECRET

d. The ohange in roto settinge between guccessive enciphariaente $i s$ not limited to any particulex type of motion, but hould be som 1 rregular motion eystem that will insure that none of the ilve rotors may be stationary for more than two successive encipherments. This insures against enoipherments of too many pairs of ldentical letters through identical rotor maze.
c. The piugging ehould be set up in bome fom to facizitate requent ohanges requiring a minimum of effort and training of operstore. A suggested scheme is to have a file of 108 carde, approximately 3 by 3 inohes, each having one of the 108 wirings of 6 inputs to 6 outpute of stators printed on ats surfece with conauoting lik. Insertion of a selection of 26 cards (accoraing to key 1isto, etc.) in 26 "glots ${ }^{n}$ or contaot poritilone woula be the equivalent of wiring up the 6 gtatope at all 26 positione. (See Fig. 4.) Another method might be to have the 26 gets of aiz input pesditons of the stators terrainate in 26 alx-pronged plugs. These to be inserted into the partioular 26 of the 108 alx-hole outlets terminating on the Pace of the plughoard, nocording to key ilst. This would eliminate the neceselty of having to prepare, isaue, and atore setb of oards containing printed oirouita.

3. Encipherment of Test Measages.

B. In order to investigate the effeots of enoiphement

SECRET

by this system; two 200-letter encipherments of identical plaintext were prepared, using rotor motions similar to Orange maohine motion. While these wife admittediy on too sinall a scale to constitute what might be called security otudy, these teste and the two other teate next deseribed gave enough olear results to serve a a guide to planning proper use of the aerioe.
b. In Teat 1, the cipher text was ressonebly flat, indi-- adual letier irequencies vaxying from three to 12 ocourrences, with all 26 letters represented. (Frequencies of plain text letters in the example showed 3 blanks and highe of 38 for X (word separator) and 27 ocourxences of letter E. .) There were 51 enciphermenta through 2 rotors, 30 three-rotor and 25 fourrotor entiphements, and 94 involving ivive or more. Longest path was 22 rotors, and the average was about sive. There was one case of two identical plain letters (separated by one letter) which yielded identical ciphor lettere and used the same rotor path.
c. The oipher text obtained from thet 2 vas found to be Rlat, and contained no signifioant repetitions. fhere were 67 encipherments involving passage of current through two rotors, 24 threemrotor encipherments, 26 four-rotor, and 82 invoiving 5 or more rotors. The larget number of rotors involved was 23. The average path was five rotors.
d. Test 3 wos the encipherment of 100 E's, in thich the wiring of stator A was direotly to the fast moving rotor.

-SECRET

Consequentiy there were no consecutime encipherments through the ame rotor path, to yield identical cipher. But there were four cases of identical consecutive cipher derived through different paths. There were 30 two-rotor endiphernents, 18 three-rotor, 11 four-rotor, and 41 enciphermente involving Pive or more rotors. The longest path was through 22 rotors.
θ. Test 4 was the enciphernent of $100 R^{\prime} \mathrm{s}$, in which the wiring of stater a was alrectiy to slow-moving rotor. This was rotor 2 in this case, and had motion oniy 42% of the time. Due to no motion of the enciphering rotore between oertain ouccessive positions, there were 9 digraphs (douglete), 6 trigraphs, and 1 pentagraph involving the game cipher letter; 1.e. Ldentical encifaering path in auccesaive positions. There were two cases of identical consecutive olpher pairg derived through different paths. There were 24 two-rotor encipherwents, 16 three-rotor, 12 fous-rotor encipherments, $x 8$ and 48 encipherments through sive or more rotors.
4. Evaluation.
e. It 10 Pelt that the prineipal contribution of the gUPERSLEX if the great variability in the number and order of rotors conetituting the path of each enoliphering imppupe. In other worie, essuming knorledge of rotor wirings, in adAND MOTION, aition to identifying rotor order, setting in the enemy must reconstruct stator biring, to reproduce the factors in encipherment. The wiring of the 26 stator positions may be

REF ID:A4146724 -SECRET

done in 108!/824! $=2.8 \times 10^{51}$ waye, ascuming adoption of the rules set forth in Fig. 3.
b. The fact that design and construction of the SUPERFLEX introduces a minimum of new mechanical or electrical principlag is considered a great advantage. The only feature which can be esid to be new is the stator plugging device, which cen be handied in a ohoice of geveral waye, all fairly simple. Rotor design, notoh setups, motion planning, and indicator encipherment sohemes can be chosen from emong know, tried techniques.
c. Since no erhaustive security stuales heve been carried out, any statements made here are aubject to the strictest review. But it is considered possible that the introduttion of Irregular reflexing, as proposed here, way conceivably meke it possible to relax certain features of security regulations which ubuaily control the use of most other clpher machines. For example, further study will reveal whether the machine wil permit use of "clear" indicetors, end under what conditions; also, whether remenciphermente may be permitted, etc.

B. Acknovi edgnent.

a. The undersigned hereby aoknowledgee the helpful suggestion and constructive oritiolams of the following individuals, during the development of the ideas contained

REF ID:A4146724 -SECRET
herein: Major Diney, Mr. Barlow, Mr. Ferner, Mi日s Bosobro; and Mr. Cordencand other members of projeots 3 ection.

REF ID:A41467294CRET
Pig. 2. Schematic Diagram of gupmrlex

Betting: ABCD
 3tator A.j 23232233.3211231831132312
 Stator $1 \quad 221341321444344441123113.3$
Rotor 2 ABODETOHIJREMAOPORSTEVUXYZA OHODIEPXRDXNPJHQUTBLIAGZGHO stator $C \quad 35466454415155523565245451$
 stator $D \quad 44521545564.523152444553545$
 Stator $5 \quad$ E6646361626366315628426626
 stator $\quad 61362616261642666363664163$

stator wirings assemblea as Pollows (See rig. 3):
1, $98,44,21,206,43,60,91,80,90,108,63,22,36,69,103,29$, $48,83,12,16,79,46,92,23,64$

Hig. 2.

Fig. 3. List of stator ilrings
2. rotor number appearing under a given atator in the innt below means the preceaing rotor (1mediately to the ieft) is wirea to input of that rotor number. For exampte, a "s" under statorcmeans that output of motor 2 is mired to input of rotor 5 at that level, or rotor position.
2. Itator A may be wired to only three rotora; in the present instance, rotors 1,2 , and 3.
3. Oniy two stators may be wired to typebar, os Right Fixed Sequence ("rotor" 6); in the present instance, tatose I and P.
4. Output of atator B has been 11mited to four rotors, in order to reduce the purcentage of ahort (2- or 3-rotor) paithe; In the present instance, rotors 2, 2, 3, and 4.
5. Tabuiation of possible stator-to-potor wiringes

	$\begin{aligned} & \text { stators: } \\ & \text { ABCD } \mathrm{BE} \end{aligned}$

6. List of all posaible rotor-atator-rotor riringe, using above limitatione:

Fig. 3. Ligt of stator Wirings (continued)

免	ABCDEB	\#	$\triangle B O D E$	\#	A B 0
37	213456	40	231456	61	24135
38	213465	50	231465	62	24136
38	213546	51	231546	63	24283
40	213564	52	.232564	64	24156
41	214356	53	234156	65	243156
42	214366	64	23.4165	66	24516
43	214536	65	234616	67	24351
44	214563	56	234562	68	243662
45	215346	57	236146	69	248136
46	215364	68	235164	70	24516
47	215436	89	235416	71	245
48	218463	60	235461	72	245361
73	312466	85	321456	97	34125
74	312465	86	321465	98	34126
75	312546	87	321546	99	341526
76	312564	88	3225164	200	$3 \& 1562$
77	314256	89	324156	101	342156
78	314265	90	324265	102	342165
79	314526	92	324616	103	342616
80	314562	92	324561	104	342561
81	315246	93	325146	105	345126
82	315264	84	325164	106	34518
83	316426	96	325416	107	345216
84	315462	96	325462	108	345261

F1g. 4. Detail of Printed Cireuit Representing Wiring \# 63 (See Fig. 3)

