// // Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. // All rights reserved. // // TERMS // // Redistribution and use in source and binary forms, with or without // modification, are permitted subject to the following conditions: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. The copyright holder's name must not be used to endorse or promote // any products derived from this software without his specific prior // written permission. // // This software is provided 'as is' with no express or implied warranties // of correctness or fitness for purpose. // Modified by Jari Ruusu, December 24 2001 // - Converted syntax to GNU CPP/assembler syntax // - C programming interface converted back to "old" API // - Minor portability cleanups and speed optimizations // An AES (Rijndael) implementation for the Pentium. This version only // implements the standard AES block length (128 bits, 16 bytes). This code // does not preserve the eax, ecx or edx registers or the artihmetic status // flags. However, the ebx, esi, edi, and ebp registers are preserved across // calls. // void aes_set_key(aes_context *cx, const unsigned char key[], const int key_len, const int f) // void aes_encrypt(const aes_context *cx, const unsigned char in_blk[], unsigned char out_blk[]) // void aes_decrypt(const aes_context *cx, const unsigned char in_blk[], unsigned char out_blk[]) #if defined(USE_UNDERLINE) # define aes_set_key _aes_set_key # define aes_encrypt _aes_encrypt # define aes_decrypt _aes_decrypt #endif #if !defined(ALIGN32BYTES) # define ALIGN32BYTES 32 #endif .file "aes-i586.S" .globl aes_set_key .globl aes_encrypt .globl aes_decrypt #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) // offsets to parameters with one register pushed onto stack #define ctx 8 // AES context structure #define in_blk 12 // input byte array address parameter #define out_blk 16 // output byte array address parameter // offsets in context structure #define nkey 0 // key length, size 4 #define nrnd 4 // number of rounds, size 4 #define ekey 8 // encryption key schedule base address, size 256 #define dkey 264 // decryption key schedule base address, size 256 // This macro performs a forward encryption cycle. It is entered with // the first previous round column values in %eax, %ebx, %esi and %edi and // exits with the final values in the same registers. #define fwd_rnd(p1,p2) \ mov %ebx,(%esp) ;\ movzbl %al,%edx ;\ mov %eax,%ecx ;\ mov p2(%ebp),%eax ;\ mov %edi,4(%esp) ;\ mov p2+12(%ebp),%edi ;\ xor p1(,%edx,4),%eax ;\ movzbl %ch,%edx ;\ shr $16,%ecx ;\ mov p2+4(%ebp),%ebx ;\ xor p1+tlen(,%edx,4),%edi ;\ movzbl %cl,%edx ;\ movzbl %ch,%ecx ;\ xor p1+3*tlen(,%ecx,4),%ebx ;\ mov %esi,%ecx ;\ mov p1+2*tlen(,%edx,4),%esi ;\ movzbl %cl,%edx ;\ xor p1(,%edx,4),%esi ;\ movzbl %ch,%edx ;\ shr $16,%ecx ;\ xor p1+tlen(,%edx,4),%ebx ;\ movzbl %cl,%edx ;\ movzbl %ch,%ecx ;\ xor p1+2*tlen(,%edx,4),%eax ;\ mov (%esp),%edx ;\ xor p1+3*tlen(,%ecx,4),%edi ;\ movzbl %dl,%ecx ;\ xor p2+8(%ebp),%esi ;\ xor p1(,%ecx,4),%ebx ;\ movzbl %dh,%ecx ;\ shr $16,%edx ;\ xor p1+tlen(,%ecx,4),%eax ;\ movzbl %dl,%ecx ;\ movzbl %dh,%edx ;\ xor p1+2*tlen(,%ecx,4),%edi ;\ mov 4(%esp),%ecx ;\ xor p1+3*tlen(,%edx,4),%esi ;\ movzbl %cl,%edx ;\ xor p1(,%edx,4),%edi ;\ movzbl %ch,%edx ;\ shr $16,%ecx ;\ xor p1+tlen(,%edx,4),%esi ;\ movzbl %cl,%edx ;\ movzbl %ch,%ecx ;\ xor p1+2*tlen(,%edx,4),%ebx ;\ xor p1+3*tlen(,%ecx,4),%eax // This macro performs an inverse encryption cycle. It is entered with // the first previous round column values in %eax, %ebx, %esi and %edi and // exits with the final values in the same registers. #define inv_rnd(p1,p2) \ movzbl %al,%edx ;\ mov %ebx,(%esp) ;\ mov %eax,%ecx ;\ mov p2(%ebp),%eax ;\ mov %edi,4(%esp) ;\ mov p2+4(%ebp),%ebx ;\ xor p1(,%edx,4),%eax ;\ movzbl %ch,%edx ;\ shr $16,%ecx ;\ mov p2+12(%ebp),%edi ;\ xor p1+tlen(,%edx,4),%ebx ;\ movzbl %cl,%edx ;\ movzbl %ch,%ecx ;\ xor p1+3*tlen(,%ecx,4),%edi ;\ mov %esi,%ecx ;\ mov p1+2*tlen(,%edx,4),%esi ;\ movzbl %cl,%edx ;\ xor p1(,%edx,4),%esi ;\ movzbl %ch,%edx ;\ shr $16,%ecx ;\ xor p1+tlen(,%edx,4),%edi ;\ movzbl %cl,%edx ;\ movzbl %ch,%ecx ;\ xor p1+2*tlen(,%edx,4),%eax ;\ mov (%esp),%edx ;\ xor p1+3*tlen(,%ecx,4),%ebx ;\ movzbl %dl,%ecx ;\ xor p2+8(%ebp),%esi ;\ xor p1(,%ecx,4),%ebx ;\ movzbl %dh,%ecx ;\ shr $16,%edx ;\ xor p1+tlen(,%ecx,4),%esi ;\ movzbl %dl,%ecx ;\ movzbl %dh,%edx ;\ xor p1+2*tlen(,%ecx,4),%edi ;\ mov 4(%esp),%ecx ;\ xor p1+3*tlen(,%edx,4),%eax ;\ movzbl %cl,%edx ;\ xor p1(,%edx,4),%edi ;\ movzbl %ch,%edx ;\ shr $16,%ecx ;\ xor p1+tlen(,%edx,4),%eax ;\ movzbl %cl,%edx ;\ movzbl %ch,%ecx ;\ xor p1+2*tlen(,%edx,4),%ebx ;\ xor p1+3*tlen(,%ecx,4),%esi // AES (Rijndael) Encryption Subroutine .text .align ALIGN32BYTES aes_encrypt: push %ebp mov ctx(%esp),%ebp // pointer to context mov in_blk(%esp),%ecx push %ebx push %esi push %edi mov nrnd(%ebp),%edx // number of rounds lea ekey+16(%ebp),%ebp // key pointer // input four columns and xor in first round key mov (%ecx),%eax mov 4(%ecx),%ebx mov 8(%ecx),%esi mov 12(%ecx),%edi xor -16(%ebp),%eax xor -12(%ebp),%ebx xor -8(%ebp),%esi xor -4(%ebp),%edi sub $8,%esp // space for register saves on stack sub $10,%edx je aes_15 add $32,%ebp sub $2,%edx je aes_13 add $32,%ebp fwd_rnd(aes_ft_tab,-64) // 14 rounds for 256-bit key fwd_rnd(aes_ft_tab,-48) aes_13: fwd_rnd(aes_ft_tab,-32) // 12 rounds for 192-bit key fwd_rnd(aes_ft_tab,-16) aes_15: fwd_rnd(aes_ft_tab,0) // 10 rounds for 128-bit key fwd_rnd(aes_ft_tab,16) fwd_rnd(aes_ft_tab,32) fwd_rnd(aes_ft_tab,48) fwd_rnd(aes_ft_tab,64) fwd_rnd(aes_ft_tab,80) fwd_rnd(aes_ft_tab,96) fwd_rnd(aes_ft_tab,112) fwd_rnd(aes_ft_tab,128) fwd_rnd(aes_fl_tab,144) // last round uses a different table // move final values to the output array. mov out_blk+20(%esp),%ebp add $8,%esp mov %eax,(%ebp) mov %ebx,4(%ebp) mov %esi,8(%ebp) mov %edi,12(%ebp) pop %edi pop %esi pop %ebx pop %ebp ret // AES (Rijndael) Decryption Subroutine .align ALIGN32BYTES aes_decrypt: push %ebp mov ctx(%esp),%ebp // pointer to context mov in_blk(%esp),%ecx push %ebx push %esi push %edi mov nrnd(%ebp),%edx // number of rounds lea dkey+16(%ebp),%ebp // key pointer // input four columns and xor in first round key mov (%ecx),%eax mov 4(%ecx),%ebx mov 8(%ecx),%esi mov 12(%ecx),%edi xor -16(%ebp),%eax xor -12(%ebp),%ebx xor -8(%ebp),%esi xor -4(%ebp),%edi sub $8,%esp // space for register saves on stack sub $10,%edx je aes_25 add $32,%ebp sub $2,%edx je aes_23 add $32,%ebp inv_rnd(aes_it_tab,-64) // 14 rounds for 256-bit key inv_rnd(aes_it_tab,-48) aes_23: inv_rnd(aes_it_tab,-32) // 12 rounds for 192-bit key inv_rnd(aes_it_tab,-16) aes_25: inv_rnd(aes_it_tab,0) // 10 rounds for 128-bit key inv_rnd(aes_it_tab,16) inv_rnd(aes_it_tab,32) inv_rnd(aes_it_tab,48) inv_rnd(aes_it_tab,64) inv_rnd(aes_it_tab,80) inv_rnd(aes_it_tab,96) inv_rnd(aes_it_tab,112) inv_rnd(aes_it_tab,128) inv_rnd(aes_il_tab,144) // last round uses a different table // move final values to the output array. mov out_blk+20(%esp),%ebp add $8,%esp mov %eax,(%ebp) mov %ebx,4(%ebp) mov %esi,8(%ebp) mov %edi,12(%ebp) pop %edi pop %esi pop %ebx pop %ebp ret // AES (Rijndael) Key Schedule Subroutine // input/output parameters #define aes_cx 12 // AES context #define in_key 16 // key input array address #define key_ln 20 // key length, bytes (16,24,32) or bits (128,192,256) #define ed_flg 24 // 0=create both encr/decr keys, 1=create encr key only // offsets for locals #define cnt -4 #define kpf -8 #define slen 8 // This macro performs a column mixing operation on an input 32-bit // word to give a 32-bit result. It uses each of the 4 bytes in the // the input column to index 4 different tables of 256 32-bit words // that are xored together to form the output value. #define mix_col(p1) \ movzbl %bl,%ecx ;\ mov p1(,%ecx,4),%eax ;\ movzbl %bh,%ecx ;\ ror $16,%ebx ;\ xor p1+tlen(,%ecx,4),%eax ;\ movzbl %bl,%ecx ;\ xor p1+2*tlen(,%ecx,4),%eax ;\ movzbl %bh,%ecx ;\ xor p1+3*tlen(,%ecx,4),%eax // Key Schedule Macros #define ksc4(p1) \ rol $24,%ebx ;\ mix_col(aes_fl_tab) ;\ ror $8,%ebx ;\ xor 4*p1+aes_rcon_tab,%eax ;\ xor %eax,%esi ;\ xor %esi,%ebp ;\ mov %esi,16*p1(%edi) ;\ mov %ebp,16*p1+4(%edi) ;\ xor %ebp,%edx ;\ xor %edx,%ebx ;\ mov %edx,16*p1+8(%edi) ;\ mov %ebx,16*p1+12(%edi) #define ksc6(p1) \ rol $24,%ebx ;\ mix_col(aes_fl_tab) ;\ ror $8,%ebx ;\ xor 4*p1+aes_rcon_tab,%eax ;\ xor 24*p1-24(%edi),%eax ;\ mov %eax,24*p1(%edi) ;\ xor 24*p1-20(%edi),%eax ;\ mov %eax,24*p1+4(%edi) ;\ xor %eax,%esi ;\ xor %esi,%ebp ;\ mov %esi,24*p1+8(%edi) ;\ mov %ebp,24*p1+12(%edi) ;\ xor %ebp,%edx ;\ xor %edx,%ebx ;\ mov %edx,24*p1+16(%edi) ;\ mov %ebx,24*p1+20(%edi) #define ksc8(p1) \ rol $24,%ebx ;\ mix_col(aes_fl_tab) ;\ ror $8,%ebx ;\ xor 4*p1+aes_rcon_tab,%eax ;\ xor 32*p1-32(%edi),%eax ;\ mov %eax,32*p1(%edi) ;\ xor 32*p1-28(%edi),%eax ;\ mov %eax,32*p1+4(%edi) ;\ xor 32*p1-24(%edi),%eax ;\ mov %eax,32*p1+8(%edi) ;\ xor 32*p1-20(%edi),%eax ;\ mov %eax,32*p1+12(%edi) ;\ push %ebx ;\ mov %eax,%ebx ;\ mix_col(aes_fl_tab) ;\ pop %ebx ;\ xor %eax,%esi ;\ xor %esi,%ebp ;\ mov %esi,32*p1+16(%edi) ;\ mov %ebp,32*p1+20(%edi) ;\ xor %ebp,%edx ;\ xor %edx,%ebx ;\ mov %edx,32*p1+24(%edi) ;\ mov %ebx,32*p1+28(%edi) .align ALIGN32BYTES aes_set_key: pushfl push %ebp mov %esp,%ebp sub $slen,%esp push %ebx push %esi push %edi mov aes_cx(%ebp),%edx // edx -> AES context mov key_ln(%ebp),%ecx // key length cmpl $128,%ecx jb aes_30 shr $3,%ecx aes_30: cmpl $32,%ecx je aes_32 cmpl $24,%ecx je aes_32 mov $16,%ecx aes_32: shr $2,%ecx mov %ecx,nkey(%edx) lea 6(%ecx),%eax // 10/12/14 for 4/6/8 32-bit key length mov %eax,nrnd(%edx) mov in_key(%ebp),%esi // key input array lea ekey(%edx),%edi // key position in AES context cld push %ebp mov %ecx,%eax // save key length in eax rep ; movsl // words in the key schedule mov -4(%esi),%ebx // put some values in registers mov -8(%esi),%edx // to allow faster code mov -12(%esi),%ebp mov -16(%esi),%esi cmpl $4,%eax // jump on key size je aes_36 cmpl $6,%eax je aes_35 ksc8(0) ksc8(1) ksc8(2) ksc8(3) ksc8(4) ksc8(5) ksc8(6) jmp aes_37 aes_35: ksc6(0) ksc6(1) ksc6(2) ksc6(3) ksc6(4) ksc6(5) ksc6(6) ksc6(7) jmp aes_37 aes_36: ksc4(0) ksc4(1) ksc4(2) ksc4(3) ksc4(4) ksc4(5) ksc4(6) ksc4(7) ksc4(8) ksc4(9) aes_37: pop %ebp mov aes_cx(%ebp),%edx // edx -> AES context cmpl $0,ed_flg(%ebp) jne aes_39 // compile decryption key schedule from encryption schedule - reverse // order and do mix_column operation on round keys except first and last mov nrnd(%edx),%eax // kt = cx->d_key + nc * cx->Nrnd shl $2,%eax lea dkey(%edx,%eax,4),%edi lea ekey(%edx),%esi // kf = cx->e_key movsl // copy first round key (unmodified) movsl movsl movsl sub $32,%edi movl $1,cnt(%ebp) aes_38: // do mix column on each column of lodsl // each round key mov %eax,%ebx mix_col(aes_im_tab) stosl lodsl mov %eax,%ebx mix_col(aes_im_tab) stosl lodsl mov %eax,%ebx mix_col(aes_im_tab) stosl lodsl mov %eax,%ebx mix_col(aes_im_tab) stosl sub $32,%edi incl cnt(%ebp) mov cnt(%ebp),%eax cmp nrnd(%edx),%eax jb aes_38 movsl // copy last round key (unmodified) movsl movsl movsl aes_39: pop %edi pop %esi pop %ebx mov %ebp,%esp pop %ebp popfl ret // finite field multiplies by {02}, {04} and {08} #define f2(x) ((x<<1)^(((x>>7)&1)*0x11b)) #define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b)) #define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b)) // finite field multiplies required in table generation #define f3(x) (f2(x) ^ x) #define f9(x) (f8(x) ^ x) #define fb(x) (f8(x) ^ f2(x) ^ x) #define fd(x) (f8(x) ^ f4(x) ^ x) #define fe(x) (f8(x) ^ f4(x) ^ f2(x)) // These defines generate the forward table entries #define u0(x) ((f3(x) << 24) | (x << 16) | (x << 8) | f2(x)) #define u1(x) ((x << 24) | (x << 16) | (f2(x) << 8) | f3(x)) #define u2(x) ((x << 24) | (f2(x) << 16) | (f3(x) << 8) | x) #define u3(x) ((f2(x) << 24) | (f3(x) << 16) | (x << 8) | x) // These defines generate the inverse table entries #define v0(x) ((fb(x) << 24) | (fd(x) << 16) | (f9(x) << 8) | fe(x)) #define v1(x) ((fd(x) << 24) | (f9(x) << 16) | (fe(x) << 8) | fb(x)) #define v2(x) ((f9(x) << 24) | (fe(x) << 16) | (fb(x) << 8) | fd(x)) #define v3(x) ((fe(x) << 24) | (fb(x) << 16) | (fd(x) << 8) | f9(x)) // These defines generate entries for the last round tables #define w0(x) (x) #define w1(x) (x << 8) #define w2(x) (x << 16) #define w3(x) (x << 24) // macro to generate inverse mix column tables (needed for the key schedule) #define im_data0(p1) \ .long p1(0x00),p1(0x01),p1(0x02),p1(0x03),p1(0x04),p1(0x05),p1(0x06),p1(0x07) ;\ .long p1(0x08),p1(0x09),p1(0x0a),p1(0x0b),p1(0x0c),p1(0x0d),p1(0x0e),p1(0x0f) ;\ .long p1(0x10),p1(0x11),p1(0x12),p1(0x13),p1(0x14),p1(0x15),p1(0x16),p1(0x17) ;\ .long p1(0x18),p1(0x19),p1(0x1a),p1(0x1b),p1(0x1c),p1(0x1d),p1(0x1e),p1(0x1f) #define im_data1(p1) \ .long p1(0x20),p1(0x21),p1(0x22),p1(0x23),p1(0x24),p1(0x25),p1(0x26),p1(0x27) ;\ .long p1(0x28),p1(0x29),p1(0x2a),p1(0x2b),p1(0x2c),p1(0x2d),p1(0x2e),p1(0x2f) ;\ .long p1(0x30),p1(0x31),p1(0x32),p1(0x33),p1(0x34),p1(0x35),p1(0x36),p1(0x37) ;\ .long p1(0x38),p1(0x39),p1(0x3a),p1(0x3b),p1(0x3c),p1(0x3d),p1(0x3e),p1(0x3f) #define im_data2(p1) \ .long p1(0x40),p1(0x41),p1(0x42),p1(0x43),p1(0x44),p1(0x45),p1(0x46),p1(0x47) ;\ .long p1(0x48),p1(0x49),p1(0x4a),p1(0x4b),p1(0x4c),p1(0x4d),p1(0x4e),p1(0x4f) ;\ .long p1(0x50),p1(0x51),p1(0x52),p1(0x53),p1(0x54),p1(0x55),p1(0x56),p1(0x57) ;\ .long p1(0x58),p1(0x59),p1(0x5a),p1(0x5b),p1(0x5c),p1(0x5d),p1(0x5e),p1(0x5f) #define im_data3(p1) \ .long p1(0x60),p1(0x61),p1(0x62),p1(0x63),p1(0x64),p1(0x65),p1(0x66),p1(0x67) ;\ .long p1(0x68),p1(0x69),p1(0x6a),p1(0x6b),p1(0x6c),p1(0x6d),p1(0x6e),p1(0x6f) ;\ .long p1(0x70),p1(0x71),p1(0x72),p1(0x73),p1(0x74),p1(0x75),p1(0x76),p1(0x77) ;\ .long p1(0x78),p1(0x79),p1(0x7a),p1(0x7b),p1(0x7c),p1(0x7d),p1(0x7e),p1(0x7f) #define im_data4(p1) \ .long p1(0x80),p1(0x81),p1(0x82),p1(0x83),p1(0x84),p1(0x85),p1(0x86),p1(0x87) ;\ .long p1(0x88),p1(0x89),p1(0x8a),p1(0x8b),p1(0x8c),p1(0x8d),p1(0x8e),p1(0x8f) ;\ .long p1(0x90),p1(0x91),p1(0x92),p1(0x93),p1(0x94),p1(0x95),p1(0x96),p1(0x97) ;\ .long p1(0x98),p1(0x99),p1(0x9a),p1(0x9b),p1(0x9c),p1(0x9d),p1(0x9e),p1(0x9f) #define im_data5(p1) \ .long p1(0xa0),p1(0xa1),p1(0xa2),p1(0xa3),p1(0xa4),p1(0xa5),p1(0xa6),p1(0xa7) ;\ .long p1(0xa8),p1(0xa9),p1(0xaa),p1(0xab),p1(0xac),p1(0xad),p1(0xae),p1(0xaf) ;\ .long p1(0xb0),p1(0xb1),p1(0xb2),p1(0xb3),p1(0xb4),p1(0xb5),p1(0xb6),p1(0xb7) ;\ .long p1(0xb8),p1(0xb9),p1(0xba),p1(0xbb),p1(0xbc),p1(0xbd),p1(0xbe),p1(0xbf) #define im_data6(p1) \ .long p1(0xc0),p1(0xc1),p1(0xc2),p1(0xc3),p1(0xc4),p1(0xc5),p1(0xc6),p1(0xc7) ;\ .long p1(0xc8),p1(0xc9),p1(0xca),p1(0xcb),p1(0xcc),p1(0xcd),p1(0xce),p1(0xcf) ;\ .long p1(0xd0),p1(0xd1),p1(0xd2),p1(0xd3),p1(0xd4),p1(0xd5),p1(0xd6),p1(0xd7) ;\ .long p1(0xd8),p1(0xd9),p1(0xda),p1(0xdb),p1(0xdc),p1(0xdd),p1(0xde),p1(0xdf) #define im_data7(p1) \ .long p1(0xe0),p1(0xe1),p1(0xe2),p1(0xe3),p1(0xe4),p1(0xe5),p1(0xe6),p1(0xe7) ;\ .long p1(0xe8),p1(0xe9),p1(0xea),p1(0xeb),p1(0xec),p1(0xed),p1(0xee),p1(0xef) ;\ .long p1(0xf0),p1(0xf1),p1(0xf2),p1(0xf3),p1(0xf4),p1(0xf5),p1(0xf6),p1(0xf7) ;\ .long p1(0xf8),p1(0xf9),p1(0xfa),p1(0xfb),p1(0xfc),p1(0xfd),p1(0xfe),p1(0xff) // S-box data - 256 entries #define sb_data0(p1) \ .long p1(0x63),p1(0x7c),p1(0x77),p1(0x7b),p1(0xf2),p1(0x6b),p1(0x6f),p1(0xc5) ;\ .long p1(0x30),p1(0x01),p1(0x67),p1(0x2b),p1(0xfe),p1(0xd7),p1(0xab),p1(0x76) ;\ .long p1(0xca),p1(0x82),p1(0xc9),p1(0x7d),p1(0xfa),p1(0x59),p1(0x47),p1(0xf0) ;\ .long p1(0xad),p1(0xd4),p1(0xa2),p1(0xaf),p1(0x9c),p1(0xa4),p1(0x72),p1(0xc0) #define sb_data1(p1) \ .long p1(0xb7),p1(0xfd),p1(0x93),p1(0x26),p1(0x36),p1(0x3f),p1(0xf7),p1(0xcc) ;\ .long p1(0x34),p1(0xa5),p1(0xe5),p1(0xf1),p1(0x71),p1(0xd8),p1(0x31),p1(0x15) ;\ .long p1(0x04),p1(0xc7),p1(0x23),p1(0xc3),p1(0x18),p1(0x96),p1(0x05),p1(0x9a) ;\ .long p1(0x07),p1(0x12),p1(0x80),p1(0xe2),p1(0xeb),p1(0x27),p1(0xb2),p1(0x75) #define sb_data2(p1) \ .long p1(0x09),p1(0x83),p1(0x2c),p1(0x1a),p1(0x1b),p1(0x6e),p1(0x5a),p1(0xa0) ;\ .long p1(0x52),p1(0x3b),p1(0xd6),p1(0xb3),p1(0x29),p1(0xe3),p1(0x2f),p1(0x84) ;\ .long p1(0x53),p1(0xd1),p1(0x00),p1(0xed),p1(0x20),p1(0xfc),p1(0xb1),p1(0x5b) ;\ .long p1(0x6a),p1(0xcb),p1(0xbe),p1(0x39),p1(0x4a),p1(0x4c),p1(0x58),p1(0xcf) #define sb_data3(p1) \ .long p1(0xd0),p1(0xef),p1(0xaa),p1(0xfb),p1(0x43),p1(0x4d),p1(0x33),p1(0x85) ;\ .long p1(0x45),p1(0xf9),p1(0x02),p1(0x7f),p1(0x50),p1(0x3c),p1(0x9f),p1(0xa8) ;\ .long p1(0x51),p1(0xa3),p1(0x40),p1(0x8f),p1(0x92),p1(0x9d),p1(0x38),p1(0xf5) ;\ .long p1(0xbc),p1(0xb6),p1(0xda),p1(0x21),p1(0x10),p1(0xff),p1(0xf3),p1(0xd2) #define sb_data4(p1) \ .long p1(0xcd),p1(0x0c),p1(0x13),p1(0xec),p1(0x5f),p1(0x97),p1(0x44),p1(0x17) ;\ .long p1(0xc4),p1(0xa7),p1(0x7e),p1(0x3d),p1(0x64),p1(0x5d),p1(0x19),p1(0x73) ;\ .long p1(0x60),p1(0x81),p1(0x4f),p1(0xdc),p1(0x22),p1(0x2a),p1(0x90),p1(0x88) ;\ .long p1(0x46),p1(0xee),p1(0xb8),p1(0x14),p1(0xde),p1(0x5e),p1(0x0b),p1(0xdb) #define sb_data5(p1) \ .long p1(0xe0),p1(0x32),p1(0x3a),p1(0x0a),p1(0x49),p1(0x06),p1(0x24),p1(0x5c) ;\ .long p1(0xc2),p1(0xd3),p1(0xac),p1(0x62),p1(0x91),p1(0x95),p1(0xe4),p1(0x79) ;\ .long p1(0xe7),p1(0xc8),p1(0x37),p1(0x6d),p1(0x8d),p1(0xd5),p1(0x4e),p1(0xa9) ;\ .long p1(0x6c),p1(0x56),p1(0xf4),p1(0xea),p1(0x65),p1(0x7a),p1(0xae),p1(0x08) #define sb_data6(p1) \ .long p1(0xba),p1(0x78),p1(0x25),p1(0x2e),p1(0x1c),p1(0xa6),p1(0xb4),p1(0xc6) ;\ .long p1(0xe8),p1(0xdd),p1(0x74),p1(0x1f),p1(0x4b),p1(0xbd),p1(0x8b),p1(0x8a) ;\ .long p1(0x70),p1(0x3e),p1(0xb5),p1(0x66),p1(0x48),p1(0x03),p1(0xf6),p1(0x0e) ;\ .long p1(0x61),p1(0x35),p1(0x57),p1(0xb9),p1(0x86),p1(0xc1),p1(0x1d),p1(0x9e) #define sb_data7(p1) \ .long p1(0xe1),p1(0xf8),p1(0x98),p1(0x11),p1(0x69),p1(0xd9),p1(0x8e),p1(0x94) ;\ .long p1(0x9b),p1(0x1e),p1(0x87),p1(0xe9),p1(0xce),p1(0x55),p1(0x28),p1(0xdf) ;\ .long p1(0x8c),p1(0xa1),p1(0x89),p1(0x0d),p1(0xbf),p1(0xe6),p1(0x42),p1(0x68) ;\ .long p1(0x41),p1(0x99),p1(0x2d),p1(0x0f),p1(0xb0),p1(0x54),p1(0xbb),p1(0x16) // Inverse S-box data - 256 entries #define ib_data0(p1) \ .long p1(0x52),p1(0x09),p1(0x6a),p1(0xd5),p1(0x30),p1(0x36),p1(0xa5),p1(0x38) ;\ .long p1(0xbf),p1(0x40),p1(0xa3),p1(0x9e),p1(0x81),p1(0xf3),p1(0xd7),p1(0xfb) ;\ .long p1(0x7c),p1(0xe3),p1(0x39),p1(0x82),p1(0x9b),p1(0x2f),p1(0xff),p1(0x87) ;\ .long p1(0x34),p1(0x8e),p1(0x43),p1(0x44),p1(0xc4),p1(0xde),p1(0xe9),p1(0xcb) #define ib_data1(p1) \ .long p1(0x54),p1(0x7b),p1(0x94),p1(0x32),p1(0xa6),p1(0xc2),p1(0x23),p1(0x3d) ;\ .long p1(0xee),p1(0x4c),p1(0x95),p1(0x0b),p1(0x42),p1(0xfa),p1(0xc3),p1(0x4e) ;\ .long p1(0x08),p1(0x2e),p1(0xa1),p1(0x66),p1(0x28),p1(0xd9),p1(0x24),p1(0xb2) ;\ .long p1(0x76),p1(0x5b),p1(0xa2),p1(0x49),p1(0x6d),p1(0x8b),p1(0xd1),p1(0x25) #define ib_data2(p1) \ .long p1(0x72),p1(0xf8),p1(0xf6),p1(0x64),p1(0x86),p1(0x68),p1(0x98),p1(0x16) ;\ .long p1(0xd4),p1(0xa4),p1(0x5c),p1(0xcc),p1(0x5d),p1(0x65),p1(0xb6),p1(0x92) ;\ .long p1(0x6c),p1(0x70),p1(0x48),p1(0x50),p1(0xfd),p1(0xed),p1(0xb9),p1(0xda) ;\ .long p1(0x5e),p1(0x15),p1(0x46),p1(0x57),p1(0xa7),p1(0x8d),p1(0x9d),p1(0x84) #define ib_data3(p1) \ .long p1(0x90),p1(0xd8),p1(0xab),p1(0x00),p1(0x8c),p1(0xbc),p1(0xd3),p1(0x0a) ;\ .long p1(0xf7),p1(0xe4),p1(0x58),p1(0x05),p1(0xb8),p1(0xb3),p1(0x45),p1(0x06) ;\ .long p1(0xd0),p1(0x2c),p1(0x1e),p1(0x8f),p1(0xca),p1(0x3f),p1(0x0f),p1(0x02) ;\ .long p1(0xc1),p1(0xaf),p1(0xbd),p1(0x03),p1(0x01),p1(0x13),p1(0x8a),p1(0x6b) #define ib_data4(p1) \ .long p1(0x3a),p1(0x91),p1(0x11),p1(0x41),p1(0x4f),p1(0x67),p1(0xdc),p1(0xea) ;\ .long p1(0x97),p1(0xf2),p1(0xcf),p1(0xce),p1(0xf0),p1(0xb4),p1(0xe6),p1(0x73) ;\ .long p1(0x96),p1(0xac),p1(0x74),p1(0x22),p1(0xe7),p1(0xad),p1(0x35),p1(0x85) ;\ .long p1(0xe2),p1(0xf9),p1(0x37),p1(0xe8),p1(0x1c),p1(0x75),p1(0xdf),p1(0x6e) #define ib_data5(p1) \ .long p1(0x47),p1(0xf1),p1(0x1a),p1(0x71),p1(0x1d),p1(0x29),p1(0xc5),p1(0x89) ;\ .long p1(0x6f),p1(0xb7),p1(0x62),p1(0x0e),p1(0xaa),p1(0x18),p1(0xbe),p1(0x1b) ;\ .long p1(0xfc),p1(0x56),p1(0x3e),p1(0x4b),p1(0xc6),p1(0xd2),p1(0x79),p1(0x20) ;\ .long p1(0x9a),p1(0xdb),p1(0xc0),p1(0xfe),p1(0x78),p1(0xcd),p1(0x5a),p1(0xf4) #define ib_data6(p1) \ .long p1(0x1f),p1(0xdd),p1(0xa8),p1(0x33),p1(0x88),p1(0x07),p1(0xc7),p1(0x31) ;\ .long p1(0xb1),p1(0x12),p1(0x10),p1(0x59),p1(0x27),p1(0x80),p1(0xec),p1(0x5f) ;\ .long p1(0x60),p1(0x51),p1(0x7f),p1(0xa9),p1(0x19),p1(0xb5),p1(0x4a),p1(0x0d) ;\ .long p1(0x2d),p1(0xe5),p1(0x7a),p1(0x9f),p1(0x93),p1(0xc9),p1(0x9c),p1(0xef) #define ib_data7(p1) \ .long p1(0xa0),p1(0xe0),p1(0x3b),p1(0x4d),p1(0xae),p1(0x2a),p1(0xf5),p1(0xb0) ;\ .long p1(0xc8),p1(0xeb),p1(0xbb),p1(0x3c),p1(0x83),p1(0x53),p1(0x99),p1(0x61) ;\ .long p1(0x17),p1(0x2b),p1(0x04),p1(0x7e),p1(0xba),p1(0x77),p1(0xd6),p1(0x26) ;\ .long p1(0xe1),p1(0x69),p1(0x14),p1(0x63),p1(0x55),p1(0x21),p1(0x0c),p1(0x7d) // The rcon_table (needed for the key schedule) // // Here is original Dr Brian Gladman's source code: // _rcon_tab: // %assign x 1 // %rep 29 // dd x // %assign x f2(x) // %endrep // // Here is precomputed output (it's more portable this way): .align ALIGN32BYTES aes_rcon_tab: .long 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80 .long 0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f .long 0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4 .long 0xb3,0x7d,0xfa,0xef,0xc5 // The forward xor tables .align ALIGN32BYTES aes_ft_tab: sb_data0(u0) sb_data1(u0) sb_data2(u0) sb_data3(u0) sb_data4(u0) sb_data5(u0) sb_data6(u0) sb_data7(u0) sb_data0(u1) sb_data1(u1) sb_data2(u1) sb_data3(u1) sb_data4(u1) sb_data5(u1) sb_data6(u1) sb_data7(u1) sb_data0(u2) sb_data1(u2) sb_data2(u2) sb_data3(u2) sb_data4(u2) sb_data5(u2) sb_data6(u2) sb_data7(u2) sb_data0(u3) sb_data1(u3) sb_data2(u3) sb_data3(u3) sb_data4(u3) sb_data5(u3) sb_data6(u3) sb_data7(u3) .align ALIGN32BYTES aes_fl_tab: sb_data0(w0) sb_data1(w0) sb_data2(w0) sb_data3(w0) sb_data4(w0) sb_data5(w0) sb_data6(w0) sb_data7(w0) sb_data0(w1) sb_data1(w1) sb_data2(w1) sb_data3(w1) sb_data4(w1) sb_data5(w1) sb_data6(w1) sb_data7(w1) sb_data0(w2) sb_data1(w2) sb_data2(w2) sb_data3(w2) sb_data4(w2) sb_data5(w2) sb_data6(w2) sb_data7(w2) sb_data0(w3) sb_data1(w3) sb_data2(w3) sb_data3(w3) sb_data4(w3) sb_data5(w3) sb_data6(w3) sb_data7(w3) // The inverse xor tables .align ALIGN32BYTES aes_it_tab: ib_data0(v0) ib_data1(v0) ib_data2(v0) ib_data3(v0) ib_data4(v0) ib_data5(v0) ib_data6(v0) ib_data7(v0) ib_data0(v1) ib_data1(v1) ib_data2(v1) ib_data3(v1) ib_data4(v1) ib_data5(v1) ib_data6(v1) ib_data7(v1) ib_data0(v2) ib_data1(v2) ib_data2(v2) ib_data3(v2) ib_data4(v2) ib_data5(v2) ib_data6(v2) ib_data7(v2) ib_data0(v3) ib_data1(v3) ib_data2(v3) ib_data3(v3) ib_data4(v3) ib_data5(v3) ib_data6(v3) ib_data7(v3) .align ALIGN32BYTES aes_il_tab: ib_data0(w0) ib_data1(w0) ib_data2(w0) ib_data3(w0) ib_data4(w0) ib_data5(w0) ib_data6(w0) ib_data7(w0) ib_data0(w1) ib_data1(w1) ib_data2(w1) ib_data3(w1) ib_data4(w1) ib_data5(w1) ib_data6(w1) ib_data7(w1) ib_data0(w2) ib_data1(w2) ib_data2(w2) ib_data3(w2) ib_data4(w2) ib_data5(w2) ib_data6(w2) ib_data7(w2) ib_data0(w3) ib_data1(w3) ib_data2(w3) ib_data3(w3) ib_data4(w3) ib_data5(w3) ib_data6(w3) ib_data7(w3) // The inverse mix column tables .align ALIGN32BYTES aes_im_tab: im_data0(v0) im_data1(v0) im_data2(v0) im_data3(v0) im_data4(v0) im_data5(v0) im_data6(v0) im_data7(v0) im_data0(v1) im_data1(v1) im_data2(v1) im_data3(v1) im_data4(v1) im_data5(v1) im_data6(v1) im_data7(v1) im_data0(v2) im_data1(v2) im_data2(v2) im_data3(v2) im_data4(v2) im_data5(v2) im_data6(v2) im_data7(v2) im_data0(v3) im_data1(v3) im_data2(v3) im_data3(v3) im_data4(v3) im_data5(v3) im_data6(v3) im_data7(v3)